Нормирование точности и технические измерения. Основные понятия о размерах, отклонениях и посадках

«Нормирование точности в машиностроении»

На курсовую работу по дисциплине «Нормирование точности в машиностроении».

Исходные данные для варианта № 23.

  • 1. Рассчитать параметры и графически изобразить посадки гладких соединений.
  • 2. Подобрать посадки подшипников по наружному и внутреннему кольцам.
  • 3. Выполнить эскиз резьбового соединения и дать расшифровку условного обозначения резьбы.
  • 4. Выполнить эскизы прямобочного шлицевого соединения и пронормировать по точности для трех методов центрирования.
  • 5. На рабочем чертеже детали указать допуски линейных размеров, необходимые отклонения формы и расположения. Назначить шероховатость поверхностей. Расшифровать обозначения.

Расчет посадок гладких соединений

Качество изделий машиностроения зависит от геометрической точности деталей, входящих в них. Точность есть понятие совокупное, и может быть оценена точностью размеров элементов детали, точностью формы поверхностей и их взаимным расположением, волнистостью и шероховатостью. Нормирование точности размеров осуществляется стандартами Единой системы допусков и посадок (ЕСДП) через систему ГОСТов (Государственных стандартов). Различают размеры: номинальный - размер, относительно которого определяются предельные размеры и который служит началом отсчета отклонений, назначается из числа стандартных по ГОСТ 6636 «Нормальные линейные размеры», предельные (наибольший и наименьший) - два предельно допустимых размера, между которыми должен находиться действительный размер годной детали; действительный - размер, установленный измерением с допускаемой погрешностью.

Принятые обозначения:

· - номинальный размер отверстия (вала);

· , - размер отверстия (вала), наибольший (максимальный), наименьший (минимальный), действительный;

· - верхнее отклонение отверстия (вала); - нижнее отклонение отверстия (вала);

· - зазор, наибольший (максимальный), наименьший (минимальный), средний соответственно;

· - натяг, наибольший (максимальный), наименьший (минимальный), средний соответственно.

При обработке каждая деталь приобретает свой действительный размер и может быть оценена как годная, если он находится в интервале предельных размеров, или забракована, если действительный размер вышел за эти границы.

Условие годности деталей может быть выражено следующем неравенством:

Разность между наибольшим и наименьшим предельными размерами называется допуском размера . Допуск всегда положительная величина.

Для отверстия;

Для вала.

Допуск является мерой точности размера. Чем меньше допуск, тем меньше допустимое колебание действительных размеров, тем выше точность детали и, как следствие, увеличивается трудоемкость обработки и ее себестоимость. Положение допуска относительно номинального размера определяется отклонениями.

Отклонением размера называется алгебраическая разность между размером (действительным, предельным) и номинальным размером. Отсюда отклонения могут быть действительными или предельными, а предельные - верхним ES (es) и нижним EI (ei):

для отверстия,

для вала,

Отклонения могут быть: положительными (со знаком плюс), если

отрицательными (со знаком минус), если

и равными нулю, если

В соединении элементов двух деталей один из них является внутренним (охватывающим), другой - наружным (охватываемым). В ЕСДП всякий наружный элемент называется валом, всякий внутренний элемент - отверстием. Термины «отверстие» и «вал» применяются и к несопрягаемым элементам.

Разность размеров отверстия и вала до сборки определяет характер соединения деталей, т.е. посадку . Зазор характеризует большую или меньшую свободу относительного перемещения деталей соединения, а натяг - степень сопротивления взаимному смещению деталей в соединении:

Конструктор назначает посадки в виде определенного сочетания полей допусков отверстия и вала, причем номинальный размер отверстия и вала является общим (одинаковым) и называется номинальным размером соединения . Существуют три типа посадок: с зазором, натягом и переходные, которые могут быть назначены в системе отверстия (СH) или в системе вала (Сh). Выбор системы диктуется конструктивными, технологическими или экономическими соображениями.

В системе отверстия посадки осуществляются между основным отверстием с основным отклонением H и валами с различными основными отклонениями (a....zc).

В системе вала посадки осуществляются между основным валом с основным отклонением h и отверстиями с различными основными отклонениями (A....ZC).

Из двух систем предпочтительной является СH, так как обработать точное отверстие дороже, чем точный вал, а для производства разных по точности отверстий в системе Сh требуется множество мерных режущих инструментов (сверл, зенкеров, разверток, протяжек и т.д.) и средств контроля.

Система вала применяется реже, в экономически обоснованных случаях: на валах, изготовленных из калиброванного холоднотянутого прутка без обработки резанием посадочных поверхностей; в соединении длинного участка вала одного номинального размера с отверстиями в нескольких деталях с различными характеристиками посадки; в соединениях стандартных деталей и узлов, выполненных в системе вала (наружное кольцо подшипника, шпонка по ширине и др.). Посадки могут быть выполнены с зазором -S, натягом- N и переходными- S(N).

Различают, которые количественно оценивают посадку и подсчитываются по формулам:

Допуск посадки с зазором

Значение иногда называют гарантированным зазором. К посадкам с зазором относятся и посадки в различных квалитетах, в которых нижняя граница поля допуска отверстия совпадает с верхней границей поля допуска вала. Для них=0.

В посадке с натягом поле допуска отверстия расположено под полем допуска вала, т.е. действительный размер вала до сборки больше действительного размера отверстия. Требуется применение силового или теплового воздействия (нагрев втулки или охлаждение вала).

Допуск посадки с натягом

где - гарантированный натяг.

Переходной посадкой называется посадка, в которой при сборке возможно получение как зазора, так и натяга. Эти посадки обеспечивают точное центрирование (совпадение осей) втулки относительно оси вала. В такой посадке поля допусков отверстия и вала частично или полностью перекрывают друг друга

Переходные посадки характеризуются наибольшими значениями натяга и зазора

Допуск переходной посадки

В переходной посадке средний натяг (зазор) рассчитывается по формуле:

Результат со знаком минус будет означать, что среднее значение для посадки соответствует Допуск посадки всегда равен сумме допусков отверстия и вала.

Исходные данные :

Номинальный диаметр: D=20 мм.

Поля допусков отверстий: E8; F7; JS6; N8; P6; S7.

Поля допусков валов: d8; f7; js6; n6; p6; r6.

Согласно ГОСТ 25347-82 «Единая система допусков и посадок. Поля допусков и рекомендуемые посадки» распишем предельные верхние (es, ES) и нижние (ei, EI) отклонения для заданных полей допуска.

1) Для поля допуска E8:

Верхнее отклонение ES = + 73 мкм

Нижнее отклонение EI = + 40 мкм

Допуск Т = 33 мкм

2) Для поля допуска F7:

Верхнее отклонение ES = + 41 мкм

Нижнее отклонение EI = + 20 мкм

Допуск Т = 21 мкм

3) Для поля допуска JS6:

Верхнее отклонение ES = + 6,5 мкм

Нижнее отклонение EI = - 6,5 мкм

Допуск Т = 13 мкм

4) Для поля допуска N8:

Верхнее отклонение ES = - 3 мкм

Нижнее отклонение EI = - 36 мкм

Допуск Т = 33 мкм

5) Для поля допуска P6:

Верхнее отклонение ES = - 18 мкм

Нижнее отклонение EI = - 31 мкм

Допуск Т = 13 мкм

6) Для поля допуска S7:

Верхнее отклонение ES = - 27 мкм

Нижнее отклонение EI = - 48 мкм

Допуск Т = 21 мкм

7) Для поля допуска d8:

Верхнее отклонение es = - 65 мкм

Нижнее отклонение ei = - 98 мкм

Допуск Т=33 мкм

8) Для поля допуска f7:

Верхнее отклонение es = - 20 мкм

Нижнее отклонение ei = - 41 мкм

Допуск Т=21 мкм

9) Для поля допуска js6:

Верхнее отклонение es = + 6,5 мкм

Нижнее отклонение ei = - 6,5 мкм

Допуск Т=13 мкм

10) Для поля допуска n6:

Верхнее отклонение es = + 28 мкм

Нижнее отклонение ei = +15 мкм

Допуск Т=13 мкм

11) Для поля допуска p6:

Верхнее отклонение es = + 35 мкм

Нижнее отклонение ei = + 22 мкм

Допуск Т=13 мкм

12) Для поля допуска r6:

Верхнее отклонение es = + 41 мкм

Нижнее отклонение ei = +28 мкм

Допуск Т=13 мкм


Рисунок 1.Схема расположения полей допусков отверстий


Рисунок 2. Схема расположения полей допусков валов

Выразим абсолютные значения отклонений размеров:

а) Через предельные размеры:

Отверстие Ш20Е8:

б) Через предельные отклонения отверстия (вала):

Образование посадок в системе отверстия

С зазором

Переходная посадка

С натягом

Изобразим графически три вида посадок.

А. В. Авилов,

Р. А. Белухин, О. М. Ладыгина

Взаимозаменяемость

Трудно отыскать замену человеку толковому.

Отличительная особенность глупцов - их полная взаимозаменяемость.

АЛЕКСЕЙ ГРИШАНКОВ

Министерство образования и науки Российской Федерации

Волжский политехнический институт (филиал)

Государственного образовательного учреждения

Высшего профессионального образования

«Волгоградский государственный технический университет»

Кафедра «Технология и оборудование машиностроительных

производств»

А. В. Авилов, Р. А. Белухин, О. М. Ладыгина

Взаимозаменяемость

учебное пособие

Волгоград 2010

Рецензенты:

Доктор технических наук, профессор кафедры «Технология машиностроения и стандартизация» ВИСТех (филиал) ВолгГАСУ

Пушкарёв О. И.

Декан строительного факультета ВИСТех (филиал) ВолгГАСУ, кандидат технических наук, доцент

Крюков С. А.

Взаимозаменяемость: учебное пособие / А.В. Авилов, Р. А. Белухин, О. М. Ладыгина; ВПИ (филиал) ВолгГТУ. – Волгоград, 2010. – 194 с.

Содержит справочно-методические материалы для выполнения курсовой (семестровой, контрольной) работы по дисциплине «Метрология, стандартизация и сертификация», «Взаимозаменяемость».

Предназначено для студентов машиностроительных специальностей всех форм обучения.

Издаётся по решению редакционно-издательского совета

Волгоградского государственного технического университета

© Волгоградский государственный

технический университет, 2010

© Волжский

политехнический институт, 2010

1 Нормирование точности линейных размеров

1.1 Размеры, отклонения, допуски

1.2 Единая система допусков и посадок (ЕСДП)

1.3 Общие допуски размеров

1.4 Расчет и назначение посадок

1.4.1 Подбор посадок методом подобия

1.4.2 Назначение посадки расчетным методом

2 Размерные цепи

2.1 Основные понятия и определения

2.2 Методы решения размерных цепей

2.2.1 Порядок расчёта размерной цепи по методу

«максимум – минимум»

3 Нормирование точности формы, шероховатости и

расположения поверхностей деталей машин

3.1 Шероховатость поверхности

3.2 Нормирование отклонений формы и расположения

поверхностей деталей машин

3.2.1 Основные понятия

3.2.2 Определение числовых значений допусков формы

поверхности

3.2.3 Выбор вида допуска, базы и определение числовых

значений допусков расположения

3.3 Зависимые и независимые допуски расположения

3.4 Общие допуски формы и расположения поверхностей

4 Нормирование точности шпоночных и шлицевых соединений

4.1 Шпоночные соединения

4.1.1 Назначение шпоночных соединений и их конструктивное исполнение

4.1.3. Требования к оформлению шпоночных соединений

4.2 Шлицевые соединения

4.2.1 Назначение, краткая характеристика и классификация шлицевых соединений

4.2.2 Способы центрирования шлицевых соединений с прямобочным профилем зуба

4.2.3 Посадки и условные обозначения прямобочных шлицевых соединений

5 Нормирование точности размеров и посадок подшипников

5.1 Назначение, технические требования, категории и классы точности подшипников

5.2 Условные обозначения подшипников

5.3 Предельные отклонения диаметров колец подшипников

5.4 Выбор посадок для колец подшипника

5.5 Нормирование точности посадочных поверхностей вала и корпуса, сопрягаемых с подшипником

5.6 Примеры выполнения сборочной единицы с подшипником качения

6 Нормирование точности метрической резьбы

6.1 Основные параметры резьбы

6.2 Допуски и посадки метрической резьбы с зазором

6.3 Допуски и посадки метрической резьбы с натягами

и переходными посадками

7 Нормирование точности цилиндрических зубчатых передач и колес

7.1Расчет геометрических параметров

7.2 Эксплуатационные требования и система допусков на

зубчатые передачи

7.2.1 Система допусков на зубчатые передачи

7.2.2 Расшифровка условных обозначений

7.3 Выбор степени точности зубчатой передачи

7.4 Выбор контрольного комплекса

7.5 Требования к рабочим чертежам зубчатых колес

7.6 Пример оформления рабочего чертежа зубчатого колеса

8 Выбор универсальных средств измерений

8.1 Факторы, влияющие на выбор средств и методов измерения

8.2 Источники погрешностей измерения и способы

их устранения

8.3 Выбор средств измерений в зависимости от их погрешности и допуска размера

8.4 Влияние погрешности измерения на достоверность

результатов контроля

8.5 Роль технических служб в выборе средств измерений

8.6 Пример выбора средств измерений

9 Контроль деталей гладкими калибрами

9.1 Назначение и типы калибров

9.2 Расчет исполнительных размеров гладких калибров

9.3 Конструкции и технические требования к калибрам

9.4 Проектирование гладких калибров для валов и отверстий

Список литературы

Приложение А

Приложение Б

1 Нормирование точности линейных размеров

1.1 Размеры, отклонения, допуски

Основные понятия и термины регламентированы ГОСТом 25346–89.

Размер – числовое значение линейной величины (диаметра, длины и т. д.). Действительным называют размер, установленный измерением с допустимой погрешностью.

Два предельно допустимых размера, между которыми должен находиться или которым может быть равен действительный размер, называются предельными размерами . Больший из них называется наибольшим предельным размером , меньший – наименьшим предельным размером .

Номинальный размер – размер, который служит началом отсчета отклонений и относительно которого определяют предельные размеры. Для деталей, составляющих соединение, номинальный размер является общим.

Не любой размер, полученный в результате расчета, может быть принят за номинальный. Чтобы повысить уровень взаимозаменяемости, уменьшить номенклатуру изделий и типоразмеров заготовок, стандартного или нормализованного режущего и измерительного инструмента, оснастки и калибров, создать условия для специализации и кооперирования предприятий, удешевления продукции, значения размеров, полученные расчетом, следует округлять в соответствии со значениями, указанными в ГОСТе 6636–69. При этом полученное расчетом или иным путем исходное значение размера, если оно отличается от стандартного, следует округлить до ближайшего большего стандартного размера. Стандарт на нормальные линейные размеры построен на базе рядов предпочтительных чисел ГОСТ 8032–84.

Наиболее широко используют ряды предпочтительных чисел, построенные по геометрической прогрессии. Геометрическая прогрессия обеспечивает рациональную градацию числовых значений параметров и размеров, когда нужно установить не одно значение, а равномерный ряд значений в определенном диапазоне. В этом случае число членов ряда получается меньшим по сравнению с арифметической прогрессией.

Принятые обозначения:

D (d )номинальный размер отверстия (вала);

D max , (d m ах), D min , (d min), D e (d e), D m (d m ) – размеры отверстия (вала), наибольший (максимальный), наименьший (минимальный), действительный, средний.

ES (es ) – верхнее предельное отклонение отверстия (вала);

El (ei ) – нижнее предельное отклонение отверстия (вала);

S , S max , S min , S m – зазоры, наибольший (максимальный), наименьший (минимальный), средний соответственно;

N , N max , N min , N m натяги, наибольший (максимальный), наименьший (минимальный), средний соответственно;

TD , Td , TS , TN , TSN – допуски отверстия, вала, зазора, натяга, зазора – натяга (в переходной посадке) соответственно;

IT 1, IT 2, IT 3…IT n ……IT 18 – допуски по квалитетам обозначаются сочетанием букв IT с порядковым номером квалитета.

Отклонение – алгебраическая разность между размером (действительным, предельным и т. д.) и соответствующим номинальным размером:

Для отверстия ES = D max – D ; EI = D min – D ;

Для вала es = d max – d ; ei = d min – d .

Действительное отклонение – алгебраическая разность между действительным и номинальным размерами. Отклонение является положительным, если действительный размер больше номинального и отрицательным, если он меньше номинального. Если действительный размер равен номинальному, то его отклонение равно нулю.

Предельным отклонением называется алгебраическая разность между предельным и номинальным размерами. Различают верхнее и нижнее отклонения. Верхнее отклонение – алгебраическая разность между наибольшим предельным и номинальным размерами. Нижнее отклонение – алгебраическая разность между наименьшим предельным и номинальным размерами.

Для упрощения и удобства работы на чертежах и в таблицах стандартов на допуски и посадки вместо предельных размеров принято проставлять значения предельных отклонений: верхнего и нижнего. Отклонения всегда указывают со знаком «+» или «–». Верхнее предельное отклонение ставится несколько выше номинального размера, а нижнее – несколько ниже. Отклонения, равные нулю, на чертеже не проставляют. Если верхнее и нижнее предельные отклонения равны по абсолютной величине, но противоположны по знаку, то числовое значение отклонения указывают со знаком «±»; отклонение указывают вслед за номинальным размером. Например:

30
;55
; 3 +0,06 ; 45±0,031.

Основное отклонение – одно из двух отклонений (верхнее или нижнее), используемое для определения поля допуска относительно нулевой линии. Обычно таким отклонением является отклонение, ближайшее к нулевой линии.

Нулевая линия – линия, соответствующая номинальному размеру, от которой откладываются отклонения размеров при графическом изображении допусков и посадок. Если нулевая линия расположена горизонтально, то положительные отклонения откладываются вверх от нее, а отрицательные – вниз.

Допуск размера – разность между наибольшим и наименьшим предельными размерами или абсолютная величина алгебраической разности между верхним и нижним отклонениями:

Для отверстия TD = D max – D mi n = ES EI ;

Для вала Td = d max – d min = es ei .

Допуск является мерой точности размера. Чем меньше допуск, тем выше требуемая точность детали, тем меньше допускается колебание действительных размеров детали.

При обработке каждая деталь приобретает свой действительный размер и может быть оценена как годная, если он находится в интервале предельных размеров, или забракована, если действительный размер вышел за эти границы.

Условие годности деталей может быть выражено следующим неравенством:

D max (d max) ≥ D e (d e) ≥ D min (d min).

Допуск является мерой точности размера. Чем меньше допуск, тем меньше допустимое колебание действительных размеров, тем выше точность детали и, как следствие, увеличивается трудоемкость обработки и ее себестоимость

Поле допуска – поле, ограниченное верхним и нижним отклонениями. Поле допуска определяется числовым значением допуска и его положением относительно номинального размера. При графическом изображении поле допуска заключено между двумя линиями, соответствующими верхнему и нижнему отклонениям относительно нулевой линии (рисунок 1.1).

Рисунок 1.1 – Схемы расположения полей допусков:

а – отверстия (ES и EI – положительные); б – вала (es и ei – отрицательные)

В соединении деталей, входящих одна в другую, есть охватывающие и охватываемые поверхности.Вал – термин, применяемый для обозначения наружных (охватываемых) элементов деталей. Отверстие – термин, условно применяемый для обозначения внутренних (охватывающих) элементов деталей. Термины отверстие и вал относятся не только к цилиндрическим деталям круглого сечения, но и к элементам деталей другой формы, например ограниченным двумя параллельными плоскостями.

Основной вал – вал, верхнее отклонение которого равно нулю (es = 0).

Основное отверстие – отверстие, нижнее отклонение которого равно нулю (EI = 0).

Зазор – разность размеров отверстия и вала, если размер отверстия больше размера вала. Зазор обеспечивает возможность относительного перемещения собранных деталей.

Натяг – разность размеров вала и отверстия до сборки, если размер вала больше размера отверстия. Натяг обеспечивает взаимную неподвижность деталей после их сборки.

Наибольший и наименьший зазоры (натяги) – два предельных значения, между которыми должен находиться зазор (натяг).

Средний зазор (натяг) есть среднее арифметическое между наибольшим и наименьшим зазором (натягом).

Посадка – характер соединения деталей, определяемый разностью их размеров до сборки.

Посадка с зазором – посадка, при которой всегда обеспечивается зазор в соединении.

В посадках с зазором поле допуска отверстия расположено над полем допуска вала. К посадкам с зазором относятся также посадки, в которых нижняя граница поля допуска отверстия совпадает с верхней границей поля допуска вала.

Посадка с натягом – посадка, при которой всегда обеспечивается натяг в соединении. В посадках с натягом поле допуска отверстия расположено под полем допуска вала

Переходной посадкой называется посадка, при которой возможно получение как зазора, так и натяга в соединении. В такой посадке поля допусков отверстия и вала полностью или частично перекрывают друг друга.

Допуск посадки – сумма допусков отверстия и вала, составляющих соединение.

Характеристики посадок:

Для посадок с зазором:

S min = D min – d max = EI es ;

S max = D max – d min = ES ei ;

S m = 0,5 (S max + S min);

Т S = S max – S min = TD + Td ;

Для посадок с натягом:

N min = d min – D max = ei ES ;

N max = d max – D min = es EI ;

N m = 0,5 (N max + N min);

Т N = N max – N min = TD + Td ;

Для переходных посадок:

S max = D max – d min = ES ei ;

N max = d max – D min = es EI ;

N m (S m) = 0,5 (N max – S max);

результат со знаком минус будет означать, что среднее значение для посадки соответствует S m .

Т S (N ) = Т N (S ) = S max + N max = TD + Td .

В машиностроении и приборостроении широко используются посадки всех трех групп: с зазором, натягом и переходные. Посадку любой группы можно получить, либо изменяя размеры обеих сопрягаемых деталей, либо одной сопряженной детали.

Совокупность посадок, в которых предельные отклонения отверстий одного номинального размера и одной точности одинаковы, а различные посадки достигаются изменением предельных отклонений валов, называется системой отверстия . Для всех посадок в системе отверстия нижнее отклонение отверстия EI = 0, т. е. нижняя граница поля допуска основного отверстия совпадает с нулевой линией.

Совокупность посадок, в которых предельные отклонения вала одного номинального размера и одной точности одинаковы, а различные посадки достигаются изменением предельных отклонений отверстий, называется системой вала . Для всех посадок в системе вала верхнее отклонение основного вала es = 0, т. е. верхняя граница поля допуска вала всегда совпадает с нулевой линией.

Обе системы равноправны и имеют примерно одинаковый характер одноименных посадок, т. е. предельные зазоры и натяги. В каждом конкретном случае на выбор той или иной системы оказывают влияние конструкторские, технологические и экономические соображения. Вместе с тем следует обратить внимание на то, что точные валы разных диаметров могут обрабатываться на станках одним инструментом при изменении только наладки станка. Точные же отверстия обрабатывают мерным режущим инструментом (зенкеры, развертки, протяжки и т. п.), причем для каждого размера отверстия требуется свой комплект инструмента. В системе отверстия различных по предельным размерам отверстий во много раз меньше, чем в системе вала, а, следовательно, сокращается номенклатура дорогостоящего инструмента. Поэтому преимущественное распространение получила система отверстия. Однако в отдельных случаях приходится использовать систему вала. Приведем некоторые примеры предпочтительного применения системы вала:

Во избежание концентрации напряжений в месте перехода с одного диаметра на другой по прочностным соображениям нежелательно делать ступенчатый вал, и тогда его выполняют постоянного диаметра;

При ремонте, когда имеется готовый вал и под него делается отверстие;

По технологическим соображениям, когда стоимость изготовления вала, например, на бесцентрово-шлифовальных станках оказывается небольшой, выгодно применять систему вала;

При использовании стандартных узлов и деталей. Например, наружный диаметр подшипников качения изготавливается по системе вала. Если делать наружный диаметр подшипника в системе отверстия, то потребовалось бы значительно расширить их номенклатуру, а обрабатывать подшипник по наружному диаметру нецелесообразно;

Когда на вал одного диаметра необходимо установить несколько отверстий с разным видом посадок.

1. Гладкие сопряжения и калибры

1.1 Расчет допусков и посадок гладких цилиндрических сопряжений

1.2 Калибры для контороля гладких цилиндрических соединений

2. Расчет и выбор посадок подшипника качения

3. Шероховатость, отклонение формы и расположения поверхностей

4. Допуски и посадки шпоночных и шлицевых соединений

4.1 Шпоночное соединение

4.2 Прямобочное шлицевое соединение

4.3 Эвольвентное шлицевое соединение

Литература

1. Гладкие сопряжения и калибры

1.Задана посадка Æ56H6/k5.

Посадка с переходная.

Предельные отклонения отверстия Æ56H6: верхнее ES=+19мкм; нижнее EI=0.

Предельные отклонения вала Æ56k5: верхнее es=14 мкм; нижнее ei=+1 мкм.

Dmax = D + ES = 56 + 0,019 = 56,019 мм;

Dmin = D + EI = 56 + 0 = 56 мм;

dmax = d + es = 56 +0.014 = 56,014 мм;

dmin = d + ei = 56 + 0.001 = 56,001 мм;

TD = IT6 = 19 мкм;

Td = IT5 = 13 мкм;

Smax = ES - ei = 19- 1 = 18 мкм;

Smin = EI - es = 0 - 14 = -14 мкм;

TS = Smax - Smin = 18 + 14 = 32 мкм.

Проверка: TS = Td+TD 32= 19 + 13

2.Задана посадка Æ70S6/h7.

Посадка с зазором.

Предельные отклонения отверстия Æ70S6: верхнее ES=-59мкм; нижнее EI=-78.

Предельные отклонения вала Æ70h7: верхнее es=0 мкм; нижнее ei=-30 мкм.

Предельные размеры отверстия и вала:

Dmax = D + ES = 70 + (-0.059) = 69.941 мм;

Dmin = D + EI = 70 + (-78) = 69.922 мм;

dmax = d + es = 70 + 0 = 70 мм;

dmin = d + ei = 70 + (0.030) = 69.970 мм;

Допуски размеров отверстия и вала:

TD = IT6 = 19 мкм;

Td = IT7 = 30 мкм;

Параметры посадки (с зазором).

Nmax = dmax - Dmin = = -0,078 мм;

Nmin = dmin - Dmax = = -0,029 мм;

TN = Nmax - Nmin = -0,0678 + 0,029 = -0,049 мм.

Проверка: TN = Td+TD 0,049 = 0,019 + 0,030

3.Задана посадка Æ105F7/h7.

Посадка c зазором.

Предельные отклонения отверстия Æ53H7: верхнее ES=+30мкм; нижнее EI=0.

Предельные отклонения вала Æ53k5: верхнее es=+15 мкм; нижнее ei=+2 мкм.

Предельные размеры отверстия и вала:

Dmax = D + ES = 53 + 0,030 = 53,030 мм;

Dmin = D + EI = 53 + 0 = 53 мм;

dmax = d + es = 53 + 0,015 = 53,015 мм;

dmin = d + ei = 53 + 0,002 = 53,002 мм;

Допуски размеров отверстия и вала:

TD = IT7 = 30 мкм;

Td = IT5 = 13 мкм;

Параметры посадки (переходная).

Smax = Dmax - dmin = 53,030 - 53,002 = 0,028 мм;

Nmax = dmax - Dmin = 53,015 - 53 = 0,015 мм;

Smin = -Nmax = -0,015 мм;

Nmin = -Smax = -0,028 мм;

TS(N) = Smax + Nmax = 0,028 - 0,015 = 0,043 мм.

Проверка: TS(N) = Td+TD 0,043 = 0,013 + 0,030

4.Задана посадка Æ21H8/h7.

Посадка с зазором.

Предельные отклонения отверстия Æ21H8: верхнее ES=+33мкм; нижнее EI=0.

Предельные отклонения вала Æ21h7: верхнее es=0 мкм; нижнее ei=-21 мкм.

Предельные размеры отверстия и вала:

Dmax = D + ES = 21 + 0,033 = 21,033 мм;

dmax = d + es = 21 + 0 = 21 мм;

dmin = d + ei = 21 + (-0,021) = 20,979 мм;

Допуски размеров отверстия и вала:

TD = IT8 = 33 мкм;

Td = IT7 = 21 мкм;

Параметры посадки (c зазором).

Smax = Dmax - dmin = 21,033 - 20,979 = 0,054 мм;

Smin = Dmin - dmax = 21 - 21 = 0;

TS = Smax - Smin = 0,054 - 0 = 0,054 мм.

Проверка: TS = Td+TD 0,054 = 0,021 + 0,033

Полученные данные для всех посадок заносим в таблицу 1.1.

Таблица 1.1 Типы и параметры посадок

Обозначение Посадки

Предельные размеры

Предельные размеры

Тип посадки

Допуск посадки

Отверстия

переходная


Рисунок 1.1 - Схема посадки №1 с зазором

Рисунок 1.2 - Схема посадки №2 с натягом

Рисунок 1.4 – Схема посадки №4 с зазором

Рисунок 1.5 – Эскизы сопрягаемых деталей: а) отверстия; б) валы;

1.2 Калибры для контроля гладких цилиндрических соединений

Разработаем предельные калибры для контроля сопряжения Æ34H7/s7. Устанавливаем допуски на изготовление предельных калибров по таблице 3 и 4.

Исходные данные:

Для отверстия Æ34H7: Н=4 мкм; Z=3,5 мкм; α=0.

Для вала: Æ34s7: H 1 =4 мкм, Z1=3,5 мкм, H p =1,5 мкм, α 1 =0, Y1=3 мкм.

Исполнительный размер проходной стороны калибра-пробки:

Прmax= Dmin+Z+=34+0,0035+0,004/2=34,0055 мм;

размер на чертеже Æ34,0055 -0,004 мм.

Исполнительный размер непроходной стороны калибра-пробки:

Неmax= Dmax- α +=34,025-0+0,004/2=34,027 мм;

размер на чертеже Æ34,027 -0,004 мм.

Исполнительный размер проходной стороны калибра-скобы:

Прmin= dmax-Z 1 - =34,068-0,0035-0,004/2=34,0625 мм;

размер на чертеже Æ34,0625 +0,004 мм.

Исполнительный размер непроходной стороны калибра-скобы:

Неmin= dmin+ α 1 - =34,043+0-0,004/2=34,041 мм;

размер на чертеже Æ34,041 +0,004 мм.

Исполнительный размер контрольного калибра:

К-Иmax= dmax+ Y 1 - α 1 +=34,068+0,003-0+0,0015/2=34,07025 мм;

размер на чертеже Æ34,0702 -0,0015 мм.

Исполнительный размер проходного контрольного калибра:

К-Прmax= dmax-Z 1 +=34,068-0,0035+0,0015/2=34,06525 мм;

размер на чертеже Æ34,0652 -0,0015 мм.

Исполнительный размер непроходного контрольного калибра:

К-Неmax= dmin+ α 1 +=34,043+0+0,0015/2+0=34,04375 мм;

размер на чертеже Æ34,0437 -0,0015 мм.

Шероховатость рабочих поверхностей калибров:

R a ≤ 0,012T разм (H 1 ,H), H 1 =H=4 мкм;

R a = 0,012۰4 = 0,048 мкм;

Принимаем R a из стандартного ряда

Для обоих калибров: R a =0,05 мкм.

Рисунок 1.6 Схемы полей допусков предельных калибров

2. Расчет и выбор посадок подшипников качения

Исходные данные:

подшипник 409;

класс точности 0;

радиальная сила F=4000 H;

вращающимся является внутреннее кольцо.

1. Параметры подшипника 409: d=45 мм; D=120 мм; B=29 мм; r=3,0 мм.

В рассматриваемом узле вращающимся кольцом является внутреннее кольцо подшипника, поэтому его посадку на вал производим с натягом, а наружное кольцо устанавливаем в корпус с зазором.

2. Определение минимального потребного натяга для внутреннего кольца подшипника:

где коэффициент k=2 для тяжёлой серии подшипника.

3. Определение максимального допустимого натяга внутреннего кольца подшипника:

По таблице 9 определяем предельные отклонения размеров:

для отверстия: ES=0; EI=–12 мкм;

для вала: es=+25 мкм; ei=+9 мкм;

5. Определение минимального и максимального натяга в соединении:

Tак как >(9 мкм > 4,522 мкм), а >(37 мкм < 205,2 мкм), можно заключить, что посадка внутреннего кольца подшипника выполнена правильно.

6. Выбираем посадку для наружного кольца подшипника из рекомендованных: Æ 120H7/l0. Предельные отклонения:

для отверстия:

TD=35 мкм;

для вала:

ei=–15 мкм.

Td=15 мкм;

Для выбранной посадки максимальный зазор:

S max =ES–ei=35–(–15)=50 мкм.

Для выбранной посадки минимальный зазор:

Smin=EI–es=0–0=0 мкм.

7. Строим схему полей допусков выбранных посадок для колец подшипника качения:

8. Эскиз сборочного узла

Рисунок 2.2 Сборочный узел

3. Шероховатость, отклонения формы и расположения поверхностей

Исходные данные:

1. Æ 45k6; Td=16 мкм;

2. Æ 50n7; Td=25 мкм;

3. Æ 45k6; Td=16 мкм;

4. Æ 25r7; Td=21 мкм;

5. Æ 53 -0,3 ; Td=300 мкм;

6. Æ 55 -0,3 ; Td=300 мкм;

7. 18h6; Td=11 мкм;

8. 9h15; Td=580 мкм;

9. Æ 14N9; Td=43 мкм;

3.1 Шероховатости отмеченных поверхностей находим сообразно назначению этих поверхностей и допуску их размера

3.1.1 Определим шероховатость для посадочных мест подшипников качения

принимаем R a =0,63 мкм из стандартного ряда.

Поверхность Æ 45k6: Td=16 мкм

Аналогично предыдущей поверхности R a =0,63 мкм.

3.1.2 Шероховатость для ответственных поверхностей, образующих с сопрягаемыми поверхностями других деталей определённые посадки

В общем случае выделенные поверхности можно считать поверхностями нормальной геометрической точности, для которых параметр шероховатости T Æ .

принимаем R a =1,25 мкм из стандартного ряда.

Поверхность Æ 25r7: Td=21 мкм;

принимаем R a =1,00 мкм из стандартного ряда.

Поверхность Æ 18h6: Td=11 мкм;

принимаем R a =0,32 мкм из стандартного ряда.

3.1.3 Определение шероховатости поверхностей, к которым не предъявляются высокие требования

Поверхность Æ 53 -0,3: Td=300 мкм;

Поверхность Æ 55 -0,3: Td=300 мкм;

принимаем R a =12,5 мкм из стандартного ряда.

Поверхность Æ 9h15: Td=580 мкм;

принимаем R a =25 мкм из стандартного ряда.

Шероховатость поверхностей шпоночного паза принимается в пределах R a =3,6…12,5 мкм, причём большие значения соответствуют дну паза.

3.2 Допуски на отклонение формы и расположения поверхностей также определим приближённым методом

3.2.1 Расчёт допусков на отклонение от круглости и цилиндричности поверхностей

Поверхность Æ 45k6: Td=16 мкм;

T мкм, принимаем T =4 мкм из стандартного ряда.

T мкм, принимаем T =4 мкм.

Поверхность Æ 50n7: Td=25 мкм;

T мкм, принимаем T =6 мкм.

Поверхность Æ 25r7: Td=21 мкм;

T мкм, принимаем T =6 мкм.

3.2.2 Допуск на радиальное биение поверхности относительно поверхности АБ

Поверхность Æ 50n7:

T мм, принимаем T =0,02 мм;

Поверхность Æ 25r7:

T мм, принимаем T =0,02 мм;

3.2.3 Допуск на отклонение от перпендикулярности торца поверхности Æ50 -0,3 для фиксации подшипника зависит от допуска размера на ширину подшипника

T мкм, принимаем T =6 мкм.


T мкм, принимаем T =120 мкм.

3.2.4 Допуск на отклонение от симметричности расположения шпоночного паза

T мкм, принимаем T =120 мкм,

3.2.5 Допуск на отклонение от параллельности шпоночного паза

T // мкм, принимаем T // =120 мкм.

где T B - при определении допуска перпендикулярности является допуском на ширину подшипника; при определении допуска отклонения от симметричности боковых сторон шпоночного паза является допуском на ширину паза вала.

Чертим эскиз вала

4. Допуски и посадки шпоночных и шлицевых соединений.

4.1 Шпоночные соединения.

Исходные данные: d=35 мм, тип соединения 3 (плотное соединение).

По ГОСТ 23360-78 выбираем основные размеры соединения:

b=10 мм, h=8 мм;

Глубина паза вала и втулки соответственно: t 1 =5 мм, t 2 =3,3 мм;

Вид исполнения 1;

Длина шпонки l=50 мм;

Условное обозначение шпонки: Шпонка 1-10 ĥ 8 ĥ 50 ГОСТ 23360-78.

Условия применения – плотное характеризуемое вероятностью получения примерно одинаковых небольших натягов в соединении шпонок с обоими пазами; сборка осуществляется напрессовкой, применяется при редких разборках и реверсивных нагрузках.

Для заданного типа соединения назначаем поля допусков для деталей шпоночного соединения:

поле допуска вала s6,

поле допуска отверстия H7,

поле допуска ширины шпонки b - h9,

поле допуска высоты шпонки h - h11,

поле допуска длины шпонки l - h14,

поле допуска ширины паза на валу и во втулке - P9,

Определяем предельные отклонения пользуясь стандартом на гладкие соединения:

диаметр вала 35

диаметр втулки 35

ширина шпонки 10

высота шпонки 8

длина шпонки 50

ширина паза на валу 10

ширина паза во втулке 10

глубина паза вала

Глубина паза втулки

Строим схемы расположения полей допусков (рисунок 4.1).

4.2 Прямобочное шлицевое соединение

Исходные данные: b-6 ĥ 28H11/ ≥ 26,7 ĥ 32H12/a11 ĥ7F8/js7 ГОСТ 1139-80

Прямобочное шлицевое соединение: центрирование по боковым поверхностям зубьев b;

поле допуска центрирующего диаметра D=32 мм

H12 - втулки,

число прямобочных шлицов 6;

внутренний диаметр соединения d=28 мм;

ширина шлица b=7 мм,

поле допуска ширины шлица втулки F8,

поле допуска ширины шлица вала js7.

Центрирование по b применяется, когда не требуется особой точности соосности, при передаче значительных моментов, в случаях, когда недопустимы большие зазоры между боковыми поверхностями вала и втулки; наиболее простой и экономичный способ.

По ГОСТ 1139-80 назначаем поля допусков втулки и вала по нецентрирующему диаметру:

втулки H11,

предельное отклонение вала по нецентрирующему диаметру d не менее 26,7 мм.

Величины предельных отклонений диаметров и ширины прямобочного шлица:

Для втулки b-6 ĥ 28H11 ĥ 32H12 ĥ7F8 ГОСТ 1139-80

центрирующий диаметр;

нецентрирующий диаметр;

ширина паза;

Для вала b-6 ĥ ≥ 26,7 ĥ 32a11 ĥ7js7 ГОСТ 1139-80

центрирующий диаметр;

нецентрирующий диаметр мм;

ширина паза;

Строим схемы расположения полей допусков (рисунок 4.2).

4.3 Эвольвентные шлицевые соединения

Исходные данные: 48 ĥ H7/h6 ĥ 2 ГОСТ 6033-80

Номинальный диаметр D=48 мм,

Модуль m=2 мм,

вид центрирования по наружному диаметру,

поле допуска наружного диаметра вала d a - h6.

Центрирование по наружному диаметру D наиболее технологично, так как в этом случае в качестве окончательной операции отверстия выполняют протягивание, а при обработке вала - шлифование. Такое центрирование применяется в деталях с незакалённым отверстием.

Определяем по ГОСТ 6033-80 недостающие параметры эвольвентного соединения:

Число зубьев Z=22;

Делительный диаметр:

Диаметр впадин шлицевого вала

Диаметр внутренней втулки

Назначаем поле допуска ширины впадины втулки e - 9H, поле допуска толщины зуба вала S - 9d: посадка 9H/9d.

Поле допуска втулки и вала по нецентрируемому диаметру при плоской форме дна впадины: для втулки D a - H11, для вала d f - h16, посадка H11/h16.

Величины предельных отклонений диаметров, предельные отклонения по боковым сторонам зубьев:

Для втулки 48 ĥ H7 ĥ 2 ГОСТ 6033-80:

центрирующий диаметр;

ширина впадины

e - 9H: ES=+71мкм;

EJ e =+26 мкм;

Для вала 48 ĥ h6 ĥ 2 ГОСТ 6033-80:

центрирующий диаметр;

толщина зуба

S - 9d: es=-44 мкм;

es e =-70 мкм;

Строим схемы расположения полей допусков (рисунок 4.3).

Литература

1. Марков Н.Н., Осипов В.В., Шабалина М.Б. Нормирование точности в машиностроении: Учеб. для машиностроит. спец. вузов. / Под ред. Ю.М. Соломенцева. – 2-е изд., перераб. и доп. – М.: Высш. шк.; Издательский центр "Академия", 2001. – 335 с.: ил.

2. Якушев А.И. и др. Взаимозаменяемость, стандартизация и технические измерения: Учебник для втузов / А.И. Якушев, Л.Н. Воронцов, Н.М. Федотов. – 6-е изд., перераб. и доп. – М.: Машиностроение, 1987. – 352 с.: ил.

3. В.И. Анурьев "Справочник конструктора-машиностроителя": в 3 т. -8е изд.: -М.: Машиностроение, 2001г.


Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Алтайский государственный технический университет

имени И.И. Ползунова»

В.А. Вагнер,

В.П. Звездаков,

В.В. Собачкин

НОРМИРОВАНИЕ ТОЧНОСТИ В МАШИНОСТРОЕНИИ

Учебное пособие

по дисциплине "Метрология, стандартизация и сертификация"

Допущено Учебно-методическим объединением вузов по университетскому политехническому образованию в качестве пособия для студентов высших учебных заведений, обучающихся по машиностроительным направлениям подготовки

Из-во АлтГТУ

Барнаул – 2011

Вагнер В.А. Нормирование точности в машиностроении. Учебное пособие по дисциплине «Метрология, стандартизация и сертификация»/ В.А. Вагнер, В.П. Звездаков, В.В. Собачкин. - Барнаул: Изд-во Алт.гос.техн. ун-т им. И.И.Ползунова.- 2011, 84 с.: ил.

В учебном пособии представлены сведения о нормировании точности в машиностроении при разработке деталей и узлов машин.

Целью работы является изучение теоретических вопросов по разделу «взаимозаменяемость» дисциплины «Метрология, стандартизация и сертификация», развитие навыков самостоятельной деятельности студентов по практическому закреплению рассмотренных в теоретической части курса задач, а также работы со справочной литературой и стандартами.

Учебное пособие предназначено для студентов высших учебных заведений всех специальностей, обучающихся по машиностроительным направлениям подготовки очной, очно-заочной и заочной форм обучения , изучающих курс «Метрология, стандартизация и сертификация».

Рецензенты:
Профессор кафедры «Метрология и взаимозаменяемость» МГТУ им. Н.Э.Баумана,

д.т.н. Пронякин В.И.
Профессор кафедры «Детали машин» Уральского федерального университета,

д.т.н. Чечулин Ю.Б.

1 Определение номинальных размеров деталей сборочной единицы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Общие сведения о размерах, допусках, посадках и предельных отклонениях. . . . . . . . . . . . . . . . . . . . . .

3 Допуски и посадки в «Единой системе допусков и посадок» . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Выбор посадок при проектировании конструкций. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1 Посадки с зазором. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Переходные посадки. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3 Посадки с натягом. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Расчет посадки с натягом. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Допуски и посадки шпоночных соединений. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1 Соединения с призматическими шпонками. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 Соединения с сегментными шпонками. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Допуски и посадки зубчатых (шлицевых) соединений. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1 Зубчатое соединение с прямобочными шлицами. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.2 Зубчатое соединение с эвольвентными шлицами. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 Посадки подшипников качения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Размерные цепи. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 Нормирование точности формы и расположения поверхностей типовых деталей машин, определение требуемой шероховатости поверхности. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.1 Допуски формы и взаимного расположения поверхностей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.2 Шероховатость поверхностей деталей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 Допуски расположения осей отверстий для крепежных деталей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 Обоснование технических требований на чертеж сборочной единицы. . . . . . . . . . . . . . . . . . . . . . . . . . .

12.1 Общие положения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.2 Определение величин технических требований. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.2.1 Определение величин боковых зазоров в зацеплении. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.2.2 Определение полноты контакта сопряженных боковых поверхностей зубьев. . . . . . . . . . . . . . . . . .

13 Указания по составлению технических требований и оформлению рабочего чертежа зубчатого колеса. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.2 Рекомендации по составлению технических требований для цилиндрического и конического зубчатых колес. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 Указания по составлению технических требований и оформлению рабочего чертежа вала редуктора

15 Рекомендации по составлению технических требований, разработке и оформлению чертежа крышки подшипника и стакана. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Список литературы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Приложение А. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Приложение Б. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


4
ВВЕДЕНИЕ

В соответствии с образовательным стандартом для студентов технических специальностей машиностроительного направления, изучающих дисциплину «Метрология, стандартизация и сертификация» в разделе взаимозаменяемость, предусмотрена курсовая работа или расчетное задание.

Целью курсовой работы (расчетного задания) является закрепление знаний, полученных из теоретического курса и приобретение навыков их практического применения , поэтому в данной работе приводятся как сведения теоретического характера по основным разделам дисциплины, так и примеры решения типовых задач курса. В приложении к работе дается справочный материал, необходимый для решения задач.

Выполнение курсовой работы проводится по индивидуальным заданиям, выданным преподавателем .

Требования к содержанию и оформлению курсовой работы (расчетного задания) изложены в методических рекомендациях .

1 Определение номинальных размеров деталей сборочной единицы

Размеры деталей, составляющих сборочную единицу, зависят от задания и варианта на курсовую работу. Для определения их номинальных значений необходимо вычислить масштабный коэффициент. Рассчитывается он следующим образом. На чертеже задания на курсовую работу измеряется размер, соответствующий диаметру вала под подшипником качения (d 3 измеренный). Заданный по заданию размер (d 3 заданный) делят на этот измеренный размер и получают масштабный коэффициент μ

Измеряя все другие размеры деталей сборочной единицы и умножая их на этот масштабный коэффициент, определяют расчётные размеры.

Для сокращения числа типоразмеров заготовок и деталей, режущего и измерительного инструмента значения номинальных размеров , полученные расчетом, необходимо округлить до значений, указанных в ГОСТ 6636-69 «Нормальные линейные размеры» (таблица А.1). После этого округленные значения номинальных размеров следует занести в таблицу 1.1. Размеры, связанные с подшипником качения, при этом, следует принять по стандарту на это изделие, независимо от величины расчётного размера. Для этого следует расшифровать условное обозначение заданного подшипника качения, определив его серию, тип и конструктивные особенности, а затем по ГОСТ 520-2002 или справочникам выписать все параметры подшипника качения, необходимые для дальнейших расчетов (присоединительный диаметр наружного кольца, ширину колец, динамическую грузоподъемность подшипника).

Затем назначают размеры, связанные с подшипником качения. Такими размерами являются размер d 1 (посадочный диаметр сквозной крышки подшипника), d 2 (диаметр отверстия в корпусе для установки подшипника), d 4 (внутренний диаметр дистанционной втулки), d 5 (посадочный диаметр глухой крышки подшипника). Обозначения по .

Например, если по заданию известно , что d 3 = 30 мм, тип подшипника 7300, то это значит, что типоразмер подшипника 7306 (d 3 /5=30/5 = 6), подшипник роликовый конический и наружный его диаметр D = 72 мм . В соответствии с этим размеры d 1 = d 2 = d 5 = 72 мм, и d 4 = d 3 = 30 мм.

При заполнении таблицы 1.1 следует обращать внимание на размеры нормированных и стандартных деталей, которые необходимо также принимать согласно соответствующим нормативным документам. К таким деталям относятся уплотнения подшипниковых узлов, шпонки, гайки круглые шлицевые, крышки подшипников сквозные и глухие, стаканы подшипников .

По полученным размерам вычерчивают в соответствующем масштабе сборочную единицу.

2 Общие сведения о размерах, допусках, посадках и предельных отклонениях

Размер – числовое значение линейной величины (диаметр, длина и т. п.) в выбранных единицах измерения. На чертежах все линейные размеры указываются в миллиметрах.

Действительный размер – размер элемента, установленный измерением с допускаемой погрешностью.

Предельные размеры – два предельно допустимых размера, между которыми должны находиться или которым может быть равен действительный размер годной детали. Больший из них называется наибольшим предельным размером, а меньший – наименьшим предельным размером. Обозначаются D max и D min для отверстия и d max и d min для вала.

Номинальный размер – размер, относительно которого определяются отклонения. Размер, который указан на чертеже является номинальным. Номинальный размер определяется конструктором в результате расчетов на прочность и жесткость или с учетом конструктивных и технологических особенностей. Для деталей, образующих посадочное соединение , номинальный размер является общим.

В
Таблица 1.1 - Размеры сборочной единицы


№ п/п

Обозначение размера

Размер измеренный, мм

Размер расчетный, мм

Размер по ГОСТ 6636-69

1

. . .

. . .

. . .

. . .

2

. . .

. . .

. . .

. . .

n

. . .

. . .

. . .

. . .

ерхнее отклонение ES, es – алгебраическая разность между наибольшим предельным и соответствующим номинальным размерами.

ES = D max – D - для отверстия, (2.1)

es = d max – d - для вала. (2.2)

Нижнее отклонение EI, ei – алгебраическая разность между наименьшим предельным и соответствующим номинальным размерами.

EI = D min – D - для отверстия, (2.3)

ei = d min – d - для вала. (2.4)

Действительное отклонение – алгебраическая разность между действительным и номинальным размерами.

Допуск Т – разность между наибольшим и наименьшим предельными размерами или алгебраическая разность между верхним и нижним отклонениями.

Т D = D max – D min = ES - EI - для отверстий, (2.5)

Т d = d max – d min = es - ei - для вала. (2.6)

Допуск всегда положителен. Он определяет допускаемое поле рассеивания действительных размеров годных деталей в партии, то есть заданную точность изготовления.

Поле допуска – поле, ограниченное наибольшим и наименьшим предельными размерами и определяемое величиной допуска Т и его положением относительно номинального размера. При графическом изображении поле допуска заключено между двумя линиями, соответствующими верхнему и нижнему отклонениям относительно нулевой линии (рисунок 2.1).

Основное отклонение – одно из двух отклонений (верхнее или нижнее), определяющее положение поля допуска относительно нулевой линии. Основным является отклонение ближайшее к нулевой линии. Второе отклонение определяется через допуск.

Нулевая линия – линия, соответствующая номинальному размеру, от которой откладывают отклонения размеров при графическом изображении допусков и посадок.

Вал – термин, условно применяемый для обозначения наружных (охватываемых) элементов деталей, включая и нецилиндрические элементы.

Отверстие – термин, условно применяемый для обозначения внутренних (охватывающих) элементов деталей, включая и нецилиндрические элементы.

Допуск отверстия обозначается T D , а вала T d . Помимо охватывающих и охватываемых элементов, называемых отверстиями и валами, в деталях имеются элементы, которые нельзя отнести ни к отверстию, ни к валу (уступы, расстояния между осями отверстий и т. д.).

Посадка - характер соединения двух деталей , определяемый разностью их размеров до сборки. Посадка характеризует свободу относительного перемещения соединяемых деталей или степень сопротивления их взаимному смещению. По характеру соединения различают три группы посадок: посадки с зазором, посадки с натягом и переходные посадки.

Зазор S – разность размеров отверстия и вала, если размер отверстия больше размера вала. Зазор обеспечивает возможность относительного перемещения собранных деталей. Наибольший, наименьший и средний зазоры определяются по формулам:

S max = D max – d min = ES - ei; (2.7)

S

Рисунок 2.1. а – сопряжение

б – схема расположения полей допусков вала и отверстия
min = D min – d max = EI - es (2.8)



Поделиться