Из ацетилена получить поливинилхлорид. Промышленные методы получения винилхлорида

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Литературный обзор

1.1 Промышленные методы получения винилхлорида

2. Технологическая часть

2.1 Материальный баланс

2.2 Технологический расчет

3. Механический расчет

3.1 Расчет на прочность корпуса

Заключение

В ведение

Винилхлорид (хлористый винил, хлорэтен, монохлорэтилен) СН2=СН-CI - бесцветный газ с эфирным запахом; т. пл. 114,6 К, т. кип. 259,2 К, хорошо растворим в обычных органических растворителях.

Винилхлорид является основным продуктом хлорорганического синтеза, на его получение в различных странах расходуется до 20-35% хлора.

Основным потребителем винилхлорида является производство поливинилхлорида, который по объему выпуска занимает второе место после полиэтилена. В начале 1990-х годов ежегодные темпы роста его производства в мире составляли 5%. Общий объем его мирового производства в 2000 г. достиг 25 млн т .

Поливинилхлорид находит применение в различных отраслях промышленности, в том числе в строительстве, электротехнике и электронике, в производствах целлюлозы и бумаги, эластомеров и волокнообразующих полимеров, настилов для пола, одежды, обуви. Самым крупным потребителем поливинилхлорида является производство труб для газо- и водопроводов, на которое расходуется до 20-55% полимера. Интенсивно увеличивается использование поливинилхлорида в качестве заменителя дерева. Суммарный объем производства поливинилхлорида в России составляет -550 тыс. т/год, или 2% мирового промышленного производства.

1 . Литературный обзор

1.1 Промышленны е методы получения винилхлорида

Исходным углеводородным сырьем для производства винилхлорида являются этан, этилен или ацетилен.

Существует четыре промышленных способа получения винилхлорида:

1.Сбалансированный двухстадийный метод, включающий стадии прямого хлорирования этилена:

или его окислительного хлорирования :

до 1,2-дихлорэтана с последующим пиролизом до винилхлорида и хлорида водорода :

Образовавшийся хлорид водорода направляется на окислительное хлорирование этилена.

2.Комбинированный метод на основе этилена и ацетилена, состоящий из стадий прямого хлорирования этилена до дихлорэтана с последующим его пиролизом до винилхлорида и хлорида водорода :

Образовавшийся хлорид водорода используют для гидрохлорирования ацетилена до винилхлорида :

или суммарно :

3. Комбинированный метод на основе легкого бензина, включающий стадии пиролиза бензина с получением смеси этилена и ацетилена примерно в стехиометрическом соотношении с последующим гидрохлорированием смеси до винилхлорида и хлорированием оставшегося этилена до дихлорэтана.

Дихлорэтан затем подвергают пиролизу до винилхлорида с рециклом образовавшегося хлорида водорода.

4. Гидрохлорирование ацетилена:

Из всех перечисленных методов наиболее широкое распространение в промышленности получил метод синтеза винилхлорида на основе этилена. Например, в США с 1989 г. практически весь винил хлорид получают этим методом.

Сбалансированный метод синтеза винилхлоридана основе этилена. В основе сбалансированного метода лежат три химические реакции:

Прямое хлорирование этилена до дихлорэтана;

Окислительное хлорирование этилена до дихлорэтана;

Пиролиз дихлорэтана до винилхлорида.

Прямое хлорирование этилена. Важнейшую роль в сбалансированном процессе получения винилхлорида играет стадия прямого хлорирования этилена. Именно на этой стадии образуется дополнительное количество дихлорэтана, необходимое для подачи на стадию пиролиза. Соотношение количеств продуктов прямого и окислительного хлорирования обычно близко к 1:1.

Реакция прямого хлорирования этилена, катализируемая кислотами Льюиса, протекает по механизму электрофильного присоединения согласно уравнению:

Взаимодействие хлора и этилена происходит в среде кипящего дихлорэтана при 363-383 К. Заместительного хлорирования этилена с образованием три- и полихлоридов этана можно избежать путем проведения реакции при 323-343 К. Использование ингибиторов (кислород, хлорид железа) позволяет понизить температуру реакции до 313-333 К при практически 100%-й селективности по дихлорэтану.

Окислительное хлорирование этилена* Основной стадией в производстве винилхлорида сбалансированным методом является окислительное хлорирование этилена. Все промышленные процессы оксихлорирования этилена могут быть разделены по двум главным признакам: проведение процесса на неподвижном слое или в "кипящем слое" катализатора и использование в качестве окислителя чистого кислорода или воздуха.

Рисунок 1 - Принципиальная схема прямого хлорирования этилена и ректификация дихлорэтана

В настоящее время большинство крупных мировых производителей винилхлорида применяют процесс в "кипящем слое".

Оксихлорирование этилена проводят в газовой фазе при 600-615 К и 150 кПа на стационарном или в "кипящем слое" катализатора. В качестве катализатора используют хлориды меди, калия, натрия и других металлов на носителях, однако промышленный катализатор представляет собой хлорид меди(нанесенный на сферический оксид алюминия. Содержание меди в катализаторе составляет 4-6%. В качестве окислителя используют воздух или кислород. Применение кислорода позволяет в десятки раз снизить объем отходящих газов и дает возможность проводить процесс при более низкой температуре. Кроме того, удлиняется срок службы катализатора и повышается производительность установки. Несмотря на высокую стоимость чистого кислорода, в промышленности наблюдается тенденция перевода действующих установок с воздуха на кислород.

Рисунок 2 - Принципиальная схема получения 1,2 дихлорэтана оксихлорированием этилена

Рисунок 3 - Зависимость степени конверсии дихлорэтана от температуры

В трубчатый реактор 1 подают этилен, хлорид водорода и воздух; при 483-533 К происходит реакция в присутствии катализатора хлорида меди,нанесенного на оксид алюминия или алюмосиликат. Применяется небольшой избыток этилена.взакалочной колонне 2 отделяют НС1, из которого получают кислоту. Инертные газы уходят из верхней части сборника 8Уверхний слой из которого поступает в колонну 2; хлорсодержащий продукт нейтрализуют и промывают в колонне 4, а затем разделяют на легкую фракцию и дихлорэтан в колоннах 5 и б (секция ректификации). Кубовые остатки отводят. В колонне 5 происходит также осушка влажного дихлорэтана азеотропной перегонкой.

Пиролиз дихлорэтана. Целевой продукт сбалансированного процесса - винилхлорид - образуется на стадии дегидрохлорирования (пиролиз) дихлорэтана.

Таблица 1 - Инициирующая активность некоторых соединений при температуре 648 К в проточном реакторе

Таблица 2 - Ингибирующая активность некоторых соединений при температуре 773 К в дифференциальном реакторе

Пиролиз дихлорэтана проводят при 723-793 К и 2 Мпа :

Степень конверсии дихлорэтана за один проход составляет 50-60% с селективностью по винилхлориду 96-99%.

Пиролиз дихлорэтана протекает по радикально-цепному механизму. Реакция начинается с разрыва связи С-С1 в молекуле дихлорэтана и образования свободных радикалов, которые далее способствуют развитию

цепи - отрыв атома Н радикалом СГ от молекулы дихлорэтана и молекулярный распад 1,2-дихлорэтильного радикала. Реакция обрыва цепи происходит при рекомбинации радикалов:

Основное влияние на скорость пиролиза дихлорэтана оказывает температура. На рисунке 3 показана зависимость степени конверсии дихлорэтана от температуры.

Значительное влияние на скорость процесса и состав продуктов могут оказывать добавки инициирующего и ингибирующего действия. На стадию пиролиза обычно поступает дихлорэтан, содержащий не менее 99,2% основного вещества. В качестве примесей, как правило, содержатся хлорэтаны, хлорэтены и бензол. В таблице 1 и 2 приведены примеры инициирующего и ингибирующего действия некоторых веществ.

Сбалансированный метод получения винилхлорида на основе этилена разработан Ю.А. Трегером с сотр. (НИИ "Синтез", г. Москва). Этот способ реализован в промышленном масштабе на ряде предприятий в России и за рубежом.

Одностадийный процесс синтеза винилхлорида из этилена (процесс фирмы "Стаффер"). Фирма "Стаффер" осуществила одностадийный процесс термохлорирования этилена до винилхлорида при 625-775 К и давлении 0,35-1,4 МПа. В качестве катализаторов этого процесса использовали железо, щелочные в щелочноземельные металлы и их оксиды, хлорид меди в смеси с асбестом, расплавы хлоридов меди и другие композиции. Объединение стадий хлорирования и пиролиза (термохлорирование) представляет некоторые трудности, так как параметры этих процессов существенно различаются. Разработанный для термохлорирования реактор состоит из трех секций, в одной из которых происходит пиролиз дихлорэтана, поступающего из реактора оксихлорирования, во второй - термохлорирование этилена довинилхлорида и дихлорэтана, а в третьей - завершается пиролиз дихлорэтана, превратившегося в первых двух секциях.

Двухстадийный процесс синтеза винилхлорида из этилена. Одним из недостатков описанной выше технологической схемы получения винилхлорида является ее многостадийность. Значительные трудности связаны с процессом термического дегидрохлорирования дихлорэтана вследствие затрат большого количества тепла и образования побочных продуктов: ацетилена, бутадиена, хлоропрена, а также интенсивного смоло- и коксообразования. Естественным путем снижения энергии активации и соответственно температуры процесса является применение катализаторов. Кроме того, в самом сбалансированном процессе скрыта возможность использования тепла экзотермической реакции оксихлори-рования этилена (238,8 кДж/моль) для осуществления эндотермической реакции дегидрохлорирования дихлорэтана (71,2 кДж/моль). Очевидно, что можно совместить эти процессы в одной реакционной зоне либо сбалансировать их по теплообмену.

Совмещенный процесс получения винилхлорида протекает в кожухо-трубном реакторе на стационарном слое катализатора. В реактор, заполненный катализатором, под давлением 0,4 МПа подают этилен, хлорид водорода и воздух, подогретые до 423 К. Реакция протекает при 623 К. Основные показатели процесса приведены ниже:

Селективность по викилхлориду, %54

Селективность по СО и COj. % 5

Степень конверсии, %:

этилена 76

хлорида водорода 66

кислорода 91

Процесс получения винилхлорида состоит из двух основных стадий: прямого хлорирования этилена и совмещенного процесса окислительного хлорирования этилена и пиролиза дихлорэтана.

В ходе реакции в реакторе / происходит выделение тепла, для снятия которого в межтрубное пространство подается теплоноситель. Регенерация теплоносителя осуществляется в котле-утилизаторе. Выходящие из реактора реакционные газы, содержащие органические продукты (винилхлорид, 1,2-дихлорэтан, этилхлорид, дихлорэтилены и др.), оксиды углерода, пары воды, азот и непрореагировавшие этилен, хлорид водорода, кислород, при 623 К поступают в куб закалочной колонны 5. Температура газов в колонне снижается до 383-393 К.Охлажденные и нейтрализованные газы из верхней части закалочной колонны поступают в конденсаторв котором происходит частичная конденсация влаги и дихлорэтана. Конденсат поступает на разделение фаз в аппарат, из которого дихлорэтан направляется в сборник дихлорэтана-сырца, а вода - в смеситель для приготовления раствора щелочи. Газовый поток, содержащий винил хлорид, этилен» не сконденсировавшиеся органические продукты, влагу, инертные газы, поступает в холодильник, в котором охлаждается до 278 К. проходит через сепаратор и скруббер, где высушивается до содержания влаги 10-20 частей на 1 млн и далее направляется в абсорбционную колонну.

При суммарной степени превращения этилена в винилхлорид, равной 89%, процесс становится конкурентоспособным по отношению к традиционному сбалансированному процессу.

Синтез винилхлорида из этана. Современные производства винилхлорида как из этилена, так и из ацетилена характеризуются высокими выходами и относительные низкими капиталовложениями. Поэтому дальнейшее усовершенствование процесса должно пойти по пути выбора дешевого и доступного углеводородного сырья. Таким сырьем является этан.

В НИИ "Синтез" под руководством Ю.А. Трегера разработан процесс получения винилхлорида из этана, который включает следующие стадии:

Оксихлорирование этана до винилхлорида и этилена;

Хлорирование этилена до дихлорэтана;

Пиролиз дихлорэтана;

Переработка хлорорганических продуктов с получением трихлорэтилена.

Все стадии процесса, исключая оксихлорирование этана, аналогичны соответствующим стадиям сбалансированного процесса получения винилхлорида из этилена.

Окислительное хлорирование этана-гетерогенно-каталитический процесс, включающий ряд последовательно-параллельных реакций.

В зависимости от условий проведения реакции могут образовываться различные хлорпроизводные этана и этилена. Синтез винилхлорида протекает в интервале температур 723-823 К. При более низких температурах (573-623 К) основными продуктами реакции являются этилхлорид и дихлорэтан, выход винилхлорида невелик.

Процесс окислительного хлорирования этана сопровождается образованием этилена и хлорэтиленов в результате сопряжения реакций заместительного и аддитивного хлорирования с реакциями дегидрирования и де-гидрохлорированияхлоралканов. Различные пути образования винилхлорида и его дальнейших превращений:

Рисунок 4

Винилхлорид образуется только в результате дегидрохлорирования дихлорэтана. В процессе оксихлорирования этана происходит значительное образование оксидов углерода за счет окисления углеводородов и хлоругле-водородов.

Оксихлорирование этана осуществляется в "кипящем слое» катализатора при 820 К и 0,2 МПа. В качестве катализатора используют силикагель пропитанный хлоридами меди и калия.

Рисунок 5 - Блок-схема получения винилхлорида (ВХ) из этана

Гидрохлорирование ацетилена. В основе метода получения винилхлорида гидрохлорированием ацетилена лежит каталитическая реакция, протекающая с большим выделением тепла:

Этот способ отличается простотой технологического оформления процесса, низкими капиталовложениями, высокой селективностью по винилхлориду, однако способ не нашел широкого промышленного применения в связи с высокой стоимостью ацетилена. Карбидный ацетилен может конкурировать с этиленом как сырье для производства винилхлорида, если его стоимость не превышает стоимости этилена более чем на 40%.

Гидрохлорирование ацетилена проводят обычно в присутствии хлорида ртути, нанесенного в количестве 10-15% на активированный уголь, в стационарном слое катализатора при 425-535 К и 0,2-1,5 МПа. Степень превращения ацетилена составляет 98,5% с селективностью по винилхлориду 98%.

Рисунок 6 - Принципиальная схема винилхлорида путем гидрохлорирования ацетилена

Хотя многие каталитические системы проявляют высокую активность, в настоящее время в промышленности применяется только катализатор на основе HgCls (сулема), несмотря на его высокую токсичность. Для повышения удерживающей способности активированного угля по отношению к хлориду ртути вводят добавки аминов.

Ацетилен после компримирования, осушки и очистки проходит через фильтр и под давлением до 70 кПа поступает на смешение с хлоридом водорода. Полученная смесь газов с температурой до 308 К поступает в реактор гидрохлорирования.Трубки реактора заполнены катализатором - сулема на носителе. Тепло реакции снимается водой или диэтиленгликолем, циркулирующим в межтрубном пространстве с последующим охлаждением в теплообменнике. Выходящий из реактора газ подается в адсорбер для очистки от соединений ртути и после охлаждения в теплообменнике компрессором подается на ректификацию в колонны. Винилхлорид поступает затем в колонну щелочной осушки и нейтрализации.

В НИИ «Синтез» разработан промышленный процесс гидрохлорирования ацетилена в "кипящем слое" катализатора. Технологическая схема состоит из следующих стадий :

Гидрохлорирование ацетилена;

Очистка и осушка реакционного газа;

Абсорбция винилхлорида из реакционного газа;

Гидрохлорированиеабгазного ацетилена;

Ректификация винилхлорида.

2 . Технологическая часть

2.1 Материальный баланс

Годовая производительность винилхлорида 500000 т/год.

Посчитаем количество рабочих дней :

К=365-(21+9)=335 дней

Посчитаем производительность в день:

ПвП=500000/335=1492,53 т/сутки= 1492537,3134кг/сутки

ПсП=1492537,3134/(1-1,035/100)=1508146,6310кг/сутки

общий расход винилхлорида постадийно:

П= ПcП -ПвП =1508146,6310-1492537,3134=15609,3176 кг/сутки

Расход винихлоридапостадийно :

На гидрохлорировании: Паа=15609,3176*0,345/1.035=5203,1058кг/сутки

В скруббере: Паа = 15609,3176*0,420/1,035=6334,2158кг/сутки

На ректификации:Паа=15609,3176*0,270/1,035=4071,9958 кг/сутки

Затраты на получения 1 т готовой продукции:

Затраты в сутки

При пересчете производительности в сутки:

П=500000/335=1492537,3 кг/сутки

Гидрохлорирование - 5,2%

На скруббере - 0,1%

На ректификации - 0,3%

Суточные производственный выход :

П= 1492537/1,041 = 1433753,4 кг/сутки

Пп= 1492537,3-1433753,4= 58783,9 кг/сутки

Выход по стадиям :

Начальная подготовка компонентов

58783,9*5,2/5,6 = 54585,05 кг/сутки

Гидрохлорирование

58783,9*0,1/5,6 = 1049,71 кг/сутки

Смешение хлора с водородом

58783,9*0,3/5,6 = 3149,13 кг/сутки

Итого: 58783,89

Суточный выход сырья :

Суточный выход каждого сырья, начиная с гидрохлорирования:

Общий выход сырья до процесса гидрохлорирования:

Ацетилен - 1%

Хлороводород - 1%

Сулема - 0,1%

Едкий калий - 0,2%

Активированный уголь - 0,3%

Суточные затраты на сырье. С учетом на весь расход:

Затратные коэффициенты:

РКацет = 21400/1508146,63 = 0,014кг/с

РКHCl= 5107/1508146,63 = 0,003 кг/с

РКсулема = 3,128/1508146,63= 0,000002кг/с

РКедк.кал. = 595/1508146,63= ,00003т/т

РКактив.уголь= 177/1508146,63= 0,0001 т/т

2.2 Технологический расчет

Расчет плотности реакционной массы:

Реакционная масса :

0,5630,10+14051,38 = 16807 кг/м3

Рассчет объема аппарата:

Объемная производительность

t-время процесса

Vс=6,3·10-5·6·3600=1,36 м3

Объем аппарата с учетом коэффициента наполненности :

Обьем данного аппарата мы принимаем по обьему данных рядов аппаратов (ГОСТ 13372-78) Аппарат такого обьема считается удобным для проведения процесса.

Число аппаратов:

Внутренний реактор диаметра (ГОСТ 9617 - 76):

Двнутр = 3200 мм

Высота аппарата:

Высоту Н аппарата берем по стандарту 5 метров.

2. 3 Тепловой баланс

Общий тепловой баланса

Q1 - Тепло требуемое для подогрева смеси

Q2 - Тепло требуемое для подогрева аппарата

Q3 - Потери тепла в окружающую среду

Определение реакционной среды:

Q1=G - С (te - tб)

С - масса растворителя

Определение тепла на подогрев аппарата:

Q1=Gап - Сап(te - tб)

Сап = 407,3 Дж/кг·град

Q2=4800·407,3(150-180oC)=58651200 Дж

Потери тепла в окружающую среду:

Q3=?·F/(tор - tп)

Коэффициент потери в ОС

(крышка) = 7,063 Вт/м2 град

(обечайка) = 5,276 Вт/м2 град

(днище) = 7,642 Вт/м2 град

F - Площадь частей аппарата

Fкрышка= Fднище = 10,3 м2

Fобечайки = 52,36 м2

Tст - средняя температура, tст= 180оС

Tв - температура воздуха tв= 20оС

Q=(10,3 · 7,063 · 10,3 · 5,276+52,36 · 7,642) · (180-20)= 84355,8 Дж

Теплоемкость компонентов:

Ацетилен Сац = 1,687 Дж/кг· град

Хлороводород Схв= 1,717 Дж/кг· град

Q1= 1034·1,687+1452·1,717=4237,3

Перевод в ватты:

Смесь в аппарате нагревается до 150-180 оС. Рубашка нагревается с помощью тока.

3 . Механический расчет

Аппарат рассчитывается с внутренним давлением под вакуумом.

р=0,1мк/м2 (кольцевое)

Допускаемое напряжение

Условия эксплуатации.

g* - номинальное допускаемое напряжение ГОСТ 18410,для стали при 180оС.

g* = 135 мк/м2

Прибавка к расчетной толщине стейки:

С = Ск+Сэ+Сд+Со

С = 1+1+1+1+1,75 = 4,75 мм

Общая толщина стенки :

S = S*+C=1,48+4,75 мм= 6,23 мм

Проверка: условие выполняется

Расчет днища:

Эллиптическое днище, сварное (м=0,8), материал - легированная сталь марки 18 п 10т коррозионностойкая.

Коэффициент ослабления на креплениях днища :

Номинальное напряжение днища:

Прибавка к расчетной толщине:

С = Ск+Сэ+Сд+Со=1+1+1+1,31=4,31 мм

Проверка:

условие выполняется.

3.1 Расчет на прочность корпуса

винилхлорид хлорирование этилен обечайка

Определить толщину стенки обечайки работающей под внутренним давлением вертикального аппарата по следующим данным:

материал - сталь0Х18Н12Т;

6) шов сварной, двойной, автоматическая сварка

7) условия - аппарат для обработки опасной смеси под давлением;

8) Ск= 1 мм = 0,001 м;

Сэ = 1 мм = 0,001 м.

Определить номинальное допускаемое напряжение (у*), для конструкционного материала по графику на рисунке 4.

Исходя из графика у* = 92

Определить допускаемое напряжение по формуле:

где з - поправочный коэффициент, учитывающий условия аппарата.

Величина поправочного коэффициента (согласно колеблется в пределах 0,9-1,0) определяется при проектировании в зависимости от условий эксплуатации, опасности и вредности обрабатываемых сред.

Для узлов и деталей аппаратов, предназначенных для обработки или хранения под давлением или без него, взрыво- и пожароопасных продуктов, а также продуктов высокой токсичности - с обогревом этих узлов и деталей открытым пламенем, точными газами или открытыми электронагревателями з=0,9;

То же, но для необогреваемых узлов и деталей или при обогреве, но с надежной изоляцией их от источников нагрева, а также для узлов и деталей аппаратов, предназначенных для обработки или хранения под давлением или без него всех прочих продуктов с обогревом этих узлов и деталей открытым пламенем, топочными газами или открытыми электронагревателями з=0,95;

Во всех остальных случаях з=1,0.

Исходя из данных з= 0,95, и следовательно у0=0,95· 92 = 87,4

Находим ц0 по формуле

Получаем ц0= (18,8 - (0,05+0,05))/18,8= 0,99

Поскольку цш меньше, чем ц0, в дальнейшем за расчетное значение коэффициента берем ц=цш. Находим значение определяющих параметров по формуле

А=(у*/р)·ц.

А = (92/2)0,95= 43,7. Определяем расчетную стенку обечайки

Полную толщину стенки обечайки находим по формуле

S = S" +С = 60+1+1+1 +х = 63 мм

где С - прибавка

С = Ск + Сэ + Сд +Со = 1+ 1+1+ х= 3мм

Находим допускаемое давление с учетом толщины по формуле

Так как 2=2, то условия прочности выполняется.

Расчет днищ обечайки

Материал днища Х18Н10Т, Dв=5,0 м;hв-0,5 м; в днище имеется центрально расположенное неукрепленное отверстие d = 0,2м; днище сварное из двух частей, сварной шов ручной электродуговой двусторонний. В низу днища есть отверстие с диаметром 0,2 метра, цш =0,95, у = 140.

ц0 = цш= 0,95

S" = 0,0188м = 18,8 мм

С = Ск + Сэ + Сд +Со = 1+ 1+1+ х =3 +х

S = 18,8 + 3 + х =22 мм или 0,022 м

Рд = 1,22 МПа

Условие выполняется, так как допускаемое давление больше рабочего.

Расчет на ветровую нагрузку

Период собственных колебании определяется по формуле:

Т = 0,825 сек;

Расчетный скоростной напор по участкам определяется по формуле:

q1 = q2 = q3 = 0,0542Мн/м2.

Силу от ветровой нагрузки на каждый участок аппарата определяем по формуле:

Pi = 0,6BiqiDihi

Изгибающий момент от ветровой нагрузки на аппарат относительно основания:

Мв1= 11,61Мн*м

Мв2=29,4Мн*м

Мв3=4,08Мн*м

Мв4=10,8Мн*м

З аключение

Винилхлорид - органическое вещество; бесцветный газ со слабым сладковатым запахом, имеющий формулу C2H3Cl и представляющий собой простейшее хлорпроизводное этилена. Вещество является чрезвычайно огне- и взрывоопасным, выделяя при горении токсичные вещества. Винилхлорид - сильный яд, оказывающий на человека канцерогенное, мутагенное и тератогенное действие. Промышленное производство винилхлорида входит в первую десятку крупнейших многотоннажных продуктов основного органического синтеза; при этом почти весь производимый объём используется для дальнейшего синтеза полихлорвинила (ПВХ), мономером которого и является винилхлорид. По мнению издания «The 100 MostImportantChemicalCompounds» (GreenwoodPress, 2007), винилхлорид входит в сотню самых важных химических соединений.

Винилхлорид очень ценное вещество. Его используют для производства поливинилхлорида, а также для производства 1,1,1-трихлорэтана, винилиденхлорида, хлорацетальдегида и др.

До середины 70-х годов 20-го века винилхлорид использовался как хладагент, пропеллант для аэрозольных баллонов и компонент для некоторых видов косметики. В этом курсовом проекте был проведен расчет геометрических размеров реактора для получения винилхлорида, его механический расчет, технологический расчет и расчет на ветровую нагрузку.

Размещено на Allbest.ru

Подобные документы

    Сущность комбинированного и сбалансированного методов получения винилхлорида. Каталитическое гидрохлорирование ацетилена. Технология получения дихлорэтана путем прямого хлорирования. Классификация вторичных энергетических ресурсов промышленности.

    курсовая работа , добавлен 30.04.2012

    Теоретические основы процесса ректификации, их методы расчетов и виды колонн ректификации. Проектирование стадии ректификации винилхлорида производительностью 300000 т/год по готовому продукту. Характеристика опасных и вредных производственных факторов.

    дипломная работа , добавлен 16.01.2014

    Поливинилхлорид (ПВХ) - термопластичный материал, получаемый полимеризацией винилхлорида, хлорзамещенного этилена. Процессы переработки, хранения и эксплуатации полимера. Производство ПВХ в массе, его физико-механические свойства и методы получения.

    курсовая работа , добавлен 20.11.2010

    Способы получения винилхлорида. Выбор метода производства, его стадии и описание технологической схемы. Характеристика сырья и готового продукта. Устройство и принцип действия основного аппарата, вспомогательное оборудование. Охрана окружающей среды.

    курсовая работа , добавлен 08.01.2012

    Расчет аппарата на прочность элементов корпуса при действии внутреннего давления. Расчет толщины стенки цилиндрической обечайки корпуса, находящейся под рубашкой, из условия устойчивости. Расчет укрепления отверстия для люка. Эскиз фланцевого соединения.

    курсовая работа , добавлен 24.12.2013

    Основные направления использования окиси этилена, оптимизация условий его получения. Физико-химические основы процесса. Материальный баланс установки получения оксида этилена. Расчет конструктивных размеров аппаратов, выбор материалов для изготовления.

    отчет по практике , добавлен 07.06.2014

    Подготовка воды для ликероводочного производства. Принципиальная технологическая схема получения водки. Купажирование напитков, каскадная фильтрация ликероводочных изделий. Технология получения пищевого уксуса. Производство твердого диоксида углерода.

    учебное пособие , добавлен 09.02.2012

    Свойства винилацетата и его применение. Общие методы получения винилацетата. Технология получения винилацетата окислением этилена в присутствии уксусной кислоты. Характеристика сырья технологии. Сравнение различных методов получения винилацетата.

    курсовая работа , добавлен 25.12.2009

    Проектирование ректификационной установки разделения смеси пропан-пропилен производительностью 3,5 т/ч с целью получения товарного пропилена. Расчет на прочность цилиндрической обечайки, аппарата на ветровую нагрузку. Укрепление отверстий, подбор фланцев.

    курсовая работа , добавлен 01.04.2011

    Материальный и тепловой расчет процесса получения осахаривателя крахмалсодержащего сырья. Технологическая схема, план и разрезы цеха по производству глюкаваморина. Оборудование для получения и подготовки питательных сред. Получение посевного материала.

В лабораторных условиях винилхлорид получают дегидрохлорированием 1,2-дихлорэтана или 1,1-дихлорэтана спиртовым раствором гидроксида натрия или калия при нагревании:

Другой метод — пропускание ацетилена через концентрированный раствор соляной кислоты в присутствии хлорида ртути в лабораторной практике используется редко.

Уравнение реакции:

Ещё одним альтернативным вариантом может служить каталитическая дегидратация этиленхлоргидрина:

Наконец, винилхлорид можно получить при взаимодействии ацетальдегида с пентахлоридом фосфора:

Промышленное производство: технологические аспекты

На 2010 год существуют три основных способа получения винилхлорида, реализованные в промышленных масштабах:

  • каталитическое газофазное гидрохлорирование ацетилена;
  • комбинированный метод на основе этилена и ацетилена;
  • сбалансированный по хлору метод на основе этилена.

Последний метод является самой современной, распространённой и экономически наиболее эффективной технологией производства, однако первые два способа, хоть и являются устаревшими, до сих пор существуют на многих предприятиях, ориентированных на использование дорогостоящего ацетилена.

Существует также новый способ, пока не получивший распространения и реализованный в виде пилотного проекта в 1998 году на одном предприятии в Германии — окислительное хлорирование этана.

Каталитическое газофазное гидрохлорирование ацетилена

Метод каталитического гидрохлорирования ацетилена, в котором ацетилен получался реакцией карбида кальция с водой, был первым коммерческим процессом получения винилхлорида.

  • Получение ацетилена:
  • Гидрохлорирование ацетилена:

Краткое описание технологии производства:

Произведённый, очищенный и осушенный ацетилен смешивают с очищенным и высушенным хлороводородом в соотношении примерно 1,0:1,1. Эта смесь газов подаётся в верхнюю часть трубчатого реактора, трубы которого заполнены катализатором, представляющим собой активированный уголь, пропитанный двухлористой ртутью HgCl 2 . Реактор изготавливается из углеродистой стали; высота труб составляет 3-6 метров, диаметр 50-80 м. Температура в области реакции 150-180 °C. После реактора реакционные газы подаются в специальную колонну, орошаемую соляной кислотой для извлечения двухлористой ртути. После первой абсорбционной колонны реакционные газы подаются в следующую, где орошаются водой и раствором щёлочи для отделения хлороводорода, ацетальдегида и углекислого газа. После этого газы охлаждаются в конденсаторе для удаления воды и подаются на ректификацию для удаления высококипящих примесей. Полученный винилхлорид на последней стадии пропускается через колонну, заполненную твёрдым едким натром для полного обезвоживания и нейтрализации.

По состоянию на 1967 год, доля метода каталитического газофазного гидрохлорирования ацетилена в производственных мощностях по выпуску винилхлорида в США составляла 32,3 %. В 2001 году американская химическая корпорация Borden остановила своё последнее производство на основе ацетилена в Луизиане, США. Помимо экономических соображений, метод каталитического гидрохлорирования ацетилена является экологически небезопасным, так как используемая в производстве ртуть, несмотря на рециркуляцию, неизбежно с газообразными отходами и сточными водами попадает в окружающую среду. В 2002 году в России такие выбросы составили около 31 кг.

Метод каталитического гидрохлорирования ацетилена на 2010 год широко распространён только в Китае из-за богатых запасов угля, наличия дешёвой гидроэлектроэнергии, а также дефицита природного газа, являющегося главным сырьём для производства этилена.

C 2003 по 2008 год метод вновь вызвал к себе интерес из-за значительного роста мировых цен на нефть и газ, однако экономический кризис 2008 года вновь сделал метод прямого окислительного хлорирования этилена наиболее привлекательным с экономической точки зрения.

Комбинированный метод на основе этилена и ацетилена

Комбинированный метод на основе этилена и ацетилена заключается в совмещении реакции хлорирования этилена и последующей деструкции дихлорэтана с реакцией гидрохлорирования ацетилена и использованием для последней хлороводорода со стадии термического разложения.

Химия процесса:

Метод позволил заменить половину ацетилена на более дешёвый этилен, а также утилизировать хлороводород, тем самым довести почти до 100 % полезное использование хлора.

Сбалансированный по хлору метод на основе этилена

Общее описание метода

На 2010 год время самым современным и наиболее эффективным с экономической точки зрения является сбалансированный процесс окислительного хлорирования этилена. В 2006 году более 95 % винилхлорида было произведено этим методом.

В основанном на этилене процессе винилхлорид получается пиролизом дихлорэтана, который, в свою очередь, синтезируется каталитической реакцией хлора с этиленом. Хлороводород, получаемый в результате дегидрохлорирования дихлорэтана, вступает в реакцию с кислородом и этиленом в присутствии медного катализатора, образуя дихлорэтан и тем самым уменьшая расход элементарного хлора, используемого для прямого хлорирования этилена. Этот процесс известен как оксихлорирование. Для получения товарного продукта винилхлорид очищают дистилляцией, а побочные хлорорганические продукты либо выделяют для получения растворителей, либо подвергают термодеструкции для вовлечения хлороводорода снова в процесс.

Химия процесса выглядит следующим образом:

  • Хлорирование этилена:
механизм стадии:
  • Термическое дегидрохлорирование дихлорэтана:
механизм стадии:
  • Окислительное хлорирование этилена:
механизм стадии:

При такой схеме производства распределение этилена происходит примерно поровну между стадиями прямого и окислительного хлорирования.

Vinnolit VCM Process

Одной из самых распространённых технологий производства винилхлорида в мире является Vinnolit VCM Process, лицензируемый немецкой компанией Vinnolit GmbH & Co.: начиная с 1964 года в мире установлено приблизительно 5,5 млн тонн мощностей по выпуску винилхлорида по этому процессу.

Ниже представлено схематичное изображение процесса:

Краткое описание стадий процесса:

  • Прямое хлорирование этилена:
Реакция хлорирования этилена протекает в жидкой фазе в среде дихлорэтана при температуре 50-125 °С в присутствии специального усовершенствованного комплексного катализатора, препятствующего образованию побочных продуктов, не расходующегося в процессе синтеза и остающегося в реакторном объёме. Благодаря этому образующийся дихлорэтан не требует очистки и напрямую поступает на стадию пиролиза.
  • Процесс оксихлорирования этилена:
Процесс оксихлорирования — экзотермическая реакция, сопровождающаяся выделением большого количества тепла и проходящая в присутствии кислорода или воздуха. Реакционная газовая смесь разогревается до температуры свыше 210 °C, а выделяемое тепло реакции используется для образования пара. Степень конверсии этилена достигает 99 %, а чистота получаемого дихлорэтана 99,5 %.
  • Процесс дистилляции дихлорэтана:
Дистилляция требуется для дихлорэтана, образующегося в процессе оксихлорирования, а также непрореагировавшего дихлорэтана со стадии пиролиза. Вода и низкокипящие компоненты удаляются в осушающей колонне. Кубовый остаток в дальнейшем поступает на стадию регенерации.
  • Пиролиз дихлорэтана:
Пиролиз дихлорэтана производится в специальных печах при температуре 480 °C; при этом теплота процесса используется для испарения и нагрева.
  • Дистилляция винилхлорида:
Продукты пиролиза, состоящие, в основном, из дихлорэтана, винилхлорида и хлороводорода, направляются в узел дистилляции. Хлороводород возвращается в отделение оксихлорирования, винилхлорид удаляется через верхнюю часть колонны, а кубовый остаток, состоящий из непрореагировавшего дихлорэтана, возвращается в процесс дистилляции после удаления побочных продуктов.
  • Регенерация побочных продуктов:
Жидкие и газообразные побочные продукты полностью сжигаются при температуре 1100-1200 °С, образуя хлороводород, который после очистки возвращается в процесс оксихлорирования; попутно за счёт высокой температуры продуцируется также пар среднего давления.

Расчётный материально-энергетический баланс процесса:

  • Этилен: 460 кг;
  • Хлор: 585 кг;
  • Кислород: 139 кг;
  • Пар: 125 кг;
  • Электроэнергия: 120 кВт*ч;
  • Вода: 150 м³.

Метод окислительного хлорирования этана

Идея использовать этан для синтеза винилхлорида была реализована в 1965-1967 годах на опытном производстве компаний The Lummus Co. и Armstrong Cork Co.. Технология прямого оксихлорирования в присутствии хлорида меди получила название Transcat Process.

Химия процесса:

Процесс проходил при 450-550 °C и давлении 1 МПа; степень конверсии этана достигала 65-70 %. Метод впоследствии был оптимизирован компанией ICI, которая снизила температурный диапазон проведения синтеза и предложила другой катализатор.

В мае 1998 года компания EVC International NV запустила опытный проект мощностью 1000 тонн в год на заводе в Вильгельмсхафене с целью опробирования и последующего продвижения на рынке запатентованного процесса окислительного хлорирования этана, или Ethane-to-VCM-Process. Предполагалось, что этот проект будет технологическим прорывом и станет началом работы над полномасштабным заводом, который, как ожидалось, будет запущен в 2003 году.

По данным производителя, температура процесса составляет менее 500 °C, степень конверсии сырья — 100 % по хлору, 99 % по кислороду и более чем 90 % по этану; выход винилхлорида превышает 90 %.

В сентябре 1999 года EVC подписала с компанией Bechtel Group, Inc. соглашение о постройке полноценного производства в Вильгельмсхафене, однако из-за финансовых проблем проект не был осуществлён.

После поглощения в 2001 году корпорацией INEOS компании EVC дальнейшая судьба проекта Ethane-to-VCM-Process не известна.

Альтернативные методы производства винилхлорида

Компанией Monsanto в 1977 году был предложен одностадийный метод получения винилхлорида с выходом до 85 % из этана под действием смеси хлороводорода и кислорода при температуре 400-650 °С в присутствии катализатора:

В 1980 году советскими учёными был запатентован альтернативный метод получения винилхлорида газофазным хлорированием смеси, содержащей этан и этилен, при температуре 350-500 °С, отвечающий следующей химической модели:

Побочными продуктами реакции являются хлорэтан, 1,1-дихлорэтан, винилиденхлорид и др. галогенпроизводные.

Одним из самых последних разработанных методов производства является способ получения винихлорида взаимодействием метилхлорида и метиленхлорида в газовой фазе при температуре 300-500 °С, давлении от 0,1 до 1 МПа, в присутствии катализаторов:

Все перечисленные способы получения винилхлорида или не были реализованы в промышленности, или не вышли из стадии экспериментального производства.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

по дисциплине «Основы технологии производства органических веществ»

на тему: «Технология получения винилхлорида из этилена сбалансированным по хлору способом»

ВВЕДЕНИЕ

Важнейшей областью химической технологии органических веществ является промышленное производство хлорорганических соединений и продуктов. Среди них ведущее место принадлежит винилхлориду, как уникальному в промышленности продукту. На его выработку в развитых странах расходуют до 35% производимого молекулярного хлора и до 90% 1,2-дихлорэтана.

Стабильное повышение роста производства винилхлорида определяется широким применением полимеров и сополимеров на его основе, обладающих при относительно низкой стоимости ценными потребительскими свойствами - химической стойкостью, устойчивостью к атмосферным воздействиям, негорючестью. Широкое распространение изделий из винилхлорида и его сополимеров стимулирует непрекращающееся совершенствование технологий и увеличение мощностей его производства. винилхлорид ацетилен этан

В связи с этим, актуальной задачей производства винилхлорида становится улучшение его качественных и количественных показателей. Реализацию этой задачи возможно осуществить, модернизируя отдельные стадии производства винилхлорида, используя наиболее экономически и экологически усовершенствованные технологии.

Целью курсовой работы является рассмотрение технологии получения винилхлорида из этилена сбалансированным по хлору способом.

При написании курсовой работы были поставлены следующие задачи:

Изучить основные характеристики винилхлорида;

Рассмотреть промышленное производство, технологические аспекты;

Проанализировать побочные продукты и методы их утилизации;

Изучить технологию получения винилхлорида из этилена сбалансированным по хлору способом,

Рассмотреть теоретические основы процесса, технологическое оформление, принципы в технологии получения;

Потребность винилхлорида, как вещества, обуславливается созданием процессов которые учитывают как экономические, так и экологические аспекты. Выбор метода производства этого вещества является важной задачей.

Основные источники информации, используемые для решения поставленной цели: статьи в специальных изданиях, материалы информационных сайтов, научные труды отечественных и зарубежных авторов в области технологии производства органических веществ, методические пособия, рекомендации и инструкции.

1. ОСНОВНАЯ ХАРАКТЕРИСТИКА ВИНИЛХЛОРИДА

1.1 Применение

Промышленное производство винилхлорида входит в первую десятку производства крупнейших многотонажных продуктов основного органического синтеза; при этом почти весь производимый объём используется для дальнейшего синтеза полихлорвинила (ПВХ), мономером которого и является винилхлорид.

Из поливинилхлорида готовят листовые материалы и трубы (винипласт), пленки, заменители кожи, «перхлорвиниловую» смолу и т.д. Из сополимеров хлористого винила с винилиденхлоридом СН 2 =ССl 2 и акрилонитрилом СН 2 =СНСN вырабатывают синтетические волокна (саран, виньон). Он служит также промежуточным продуктом для синтеза 1,1,2-трихлорэтана, винилиденхлорида, метилхлороформа

1.2 Физические свойства

Винилхлорид (хлористый винил, хлорэтен, монохлорэтилен) при нормальных условиях представляет собой бесцветный газ со слабым сладковатым запахом, напоминающим запах хлороформа.

Порог ощущения запаха в воздухе составляет приблизительно 3000 частей на миллион. Малорастворим в воде (около 0,95% масс. при 15--85 °С), легко растворим в спирте, хлороформе и дихлорэтане, растворим в диэтиловом эфире. Винилхлорид обладает крайне высокой канцерогенной активностью.

1.3 Химические свойства

Винилхлорид -- достаточно активное химическое соединение, чьи химические свойства определяются как наличием двойной связи, так и атома хлора. Наибольший интерес представляет собой реакция полимеризации винилхлорида, имеющая огромное практическое значение.

1.3.1 Реакции присоединения по двойной связи

Хлористый винил достаточно легко реагирует с хлором как в жидкой, так и газовой фазе, образуя 1,1,2-трихлорэтан:

Винилхлорид присоединяет галогенводороды по двойной связи в соответствии с правилом Марковникова только в присутствии катализаторов (хлорид железа (III), хлорид цинка и др.) при повышенной температуре, образуя 1,1-дигалогеналканы:

Йодистый водород присоединяется к винихлориду в присутствии каталитического количества йода с образованием 1-хлор-1-иодэтана:

С водным раствором хлора винилхлорид реагирует, образуя хлорацетальдегид:

Вступает в реакцию Фриделя-Крафтса с бензолом в присутствии хлорида алюминия, образуя 1,1-дифенилэтан:

1.3.2 Реакции замещения по атому хлора

Традиционные реакции замещения, типичные для многих галогенуглеводородов, для винилхлорида не доступны. Обычно, под действием оснований, особенно при нагревании, вместо замещения протекают реакции полимеризации или элиминирования. Тем не менее, в присутствии солей палладия можно осуществить нуклеофильное замещение по атому хлора: таким образом удаётся получить винилалкоголяты, а также простые и сложные виниловые эфиры:

Реакцию замещения с алкоголятом натрия можно провести и без катализатора в достаточно жёстких условия: при длительном нагревании в закрытом автоклаве при температуре около 100 °С:

В обычных условиях винилхлорид не образует реактивы Гриньяра, однако в среде тетрагидрофурана удалось получить винилмагнийгалогениды (Реактивы Нормана):

В дальнейшем, винилмагнийхлорид можно использовать для синтеза широкого спектра винилпроизводных, например:

1.3.3 Реакция полимеризации

В отсутствии кислорода и света при обычных условиях чистый винилхлорид может существовать достаточно долго, не претерпевая каких-либо изменений; однако появление свободных радикалов, вызываемое как фотохимически, так и термохимически, приводит к его быстрой полимеризации.

2. ПРОМЫШЛЕННОЕ ПРОИЗВОДСТВО: ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ

На 2010 год существуют четыре основных способа получения винилхлорида, реализованные в промышленных масштабах. Винилхлорид можно получить различными способами:

1. гидрохлорированием ацетилена в газовой или жидкой фазах в присутствии катализатора.

2. дегидрохлорированием 1,2-дихлорэтана (в жидкой фазе) гидроксидом натрия в водной или спиртовой среде:

СН 2 С1 - СН 2 С1 + NaOH?> СН 2 = CHCl + NaCl + Н 2 0 (2.3.2.)

3. термическим дегидрохлорированием 1,2-дихлорэтана в паровой фазе в присутствии катализаторов, инициаторов или без них:

СН 2 C1 = CH 2 С1 > CH 2 =CHCl+HCl (2.3.3.)

4. хлорированием этилена в газовой фазе в объеме, либо в присутствии катализатора, например оксида алюминия:

CH 2 =CH 2 +Cl 2 >CH 2 =CHCl+HCl (2.3.4.)

КАК соотносятся перечисленные реакции с разд 2.1, 2.2, 2.3,2.4.

Рассмотрим несколько наиболее распространенных промышленных способов производства винилхлорида из ацетилена и этилена.

Сырьем для получения винилхлорида являются этилен и хлор

Этилемн (по ИЮПАК: этен) -- органическое химическое соединение, описываемое формулой С 2 H 4 . Является простейшим алкеном (олефином). При нормальных условиях -- бесцветный горючий газ со слабым запахом. Частично растворим в воде (25,6 мл в 100 мл воды при 0°C), этаноле (359 мл в тех же условиях). Хорошо растворяется в диэтиловом эфире и углеводородах. Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности, а также является фитогормоном. Этилен -- самое производимое органическое соединение в мире; общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2--3 % в год. Этилен обладает наркотическим действием.

Хлор- желто-зеленый газ с резким удушающим запахом; t пл. -100,98°С, t кип. -33,97 °С. Один из наиболее химически активных элементов, он непосредственно взаимодействует со всеми металлами и большинством неметаллов (образуя хлориды), лишь реакция хлора с О 2 , N 2 требует специальных методов активации - УФ облучения или электроразряда, в остальных случаях достаточно простого нагревания. Практически весь производимый в мире хлор получают электрохимическим методом -электролизом водного раствора NaCl или, гораздо реже, КСl. Другие продукты электролиза - щелочь (1,13 т NaOH на 1 т С1 2) и Н 2 .

2.1 Получение винилхлорида из ацетилена

Метод каталитического гидрохлорирования ацетилена, в котором ацетилен получался реакцией карбида кальция с водой, был первым коммерческим процессом получения винилхлорида.

Краткое описание технологии производства:

Произведенный, очищенный и осушенный ацетилен (содержание влаги не более 1,5 г/м 3) смешивают с очищенным и высушенным хлороводородом в соотношении примерно 1,0:1,1. Эта смесь газов подаётся в верхнюю часть трубчатого реактора, трубы которого заполнены катализатором, представляющим собой активированный уголь, пропитанный двухлористой ртутью HgCl 2 (10--15 %). Реактор изготавливается из углеродистой стали; высота труб составляет 3--6 метров, диаметр: 50--80 м. Температура в области реакции: 150--180 °C. После реактора реакционные газы подаются в специальную колонну, орошаемую соляной кислотой для извлечения двухлористой ртути. После первой абсорбционной колонны реакционные газы подаются в следующую, где орошаются водой и раствором щелочи для отделения хлороводорода, ацетальдегида и углекислого газа. После этого газы охлаждаются в конденсаторе для удаления воды и подаются на ректификацию для удаления высококипящих примесей. Полученный винилхлорид на последней стадии пропускается через колонну, заполненную твердым едким натром для полного обезвоживания и нейтрализации.

По состоянию на 1987 год, доля метода каталитического газофазного гидрохлорирования ацетилена в производственных мощностях по выпуску винилхлорида в США составляла 32,3 % (405,6 тыс. тонн). В 2001 году американская химическая корпорация Borden остановила своё последнее производство на основе ацетилена в Луизиане, США. Помимо экономических соображений, метод каталитического гидрохлорирования ацетилена является экологически небезопасным, так как используемая в производстве ртуть, несмотря на рециркуляцию, неизбежно с газообразными отходами и сточными водами попадает в окружающую среду. В 2002 году в России такие выбросы составили около 31 кг. Метод каталитического гидрохлорирования ацетилена в настоящий момент достаточно широко распространён только в Китае из-за богатых запасов угля, наличия дешёвой гидроэлектроэнергии, а также дефицита природного газа, являющегося главным сырьём для производства этилена. C 2003 по 2008 год метод вновь вызвал к себе интерес из-за значительного роста мировых цен на нефть и газ, однако экономический кризис 2008 года вновь сделал метод прямого окислительного хлорирования этилена наиболее привлекательным с экономической точки зрения.

2.2 Комбинированный процесс получения винилхлорида из ацетилена и этилена

Экономические показатели процесса можно улучшить и за счет комбинирования двух других способов производства винилхлорида: из этилена и ацетилена, когда НС1, выделяющийся при пиролизе 1,2-дихлорэтана, используется для гидрохлорирования ацетилена.

В этом процессе 50 % ацетилена заменяется на этилен, а хлорид водорода квалифицированно применяется в этом же процессе, следовательно, полностью используется хлор. Комбинированный процесс позволяет снизить себестоимость винилхлорида на 6--7 % по сравнению с ацетиленовым процессом.

Как известно, ацетилен и этилен получаются одновременно, например в процессе Мектрокрекинга. Вместе с тем, винилхлорид может быть получен как из этилена, так и из ацетилена. В связи с этим была предложена технология получения винилхлорида в комбинированном процессе. При этом предусматривается, что на первом этапе получается 1,2-дихлорэтан прямым хлорированием этилена и гидрохлорированием ацетилена с использованием НС1, выделяющегося при хлорировании этилена. На втором этапе осуществляется дегидрохлорирование 1,2-дихлорэтана с получением винилхлорида. Получение 1,2-дихлорэтана хлорированием этилена; процесс гидрохлорирования ацетилена с получением винилхлорида и процесс дегидрохлорирования 1,2-дихлорэтана были рассмотрены ранее. Следовательно, нет необходимости рассматривать полную технологическую схему, так как она состоит из трех указанных подсистем, стадий очистки и ректификации.

Комбинированный метод на основе этилена и ацетилена заключается в совмещении реакции хлорирования этилена и последующей деструкции дихлорэтана с реакцией гидрохлорирования ацетилена и использованием для последней хлороводорода со стадии термического разложения. Метод позволил заменить половину ацетилена на более дешёвый этилен, а также утилизировать хлороводород, тем самым довести почти до 100 % полезное использование хлора.

2.3 Метод окислительного хлорирования этана

Идея использовать этан для синтеза винилхлорида была реализована в 1965--1967 годах на опытном производстве компаний The Lummus Co. и Armstrong Cork Co.. Технология прямого оксихлорирования в присутствии хлорида меди (I) получила название Transcat Process. Процесс проходил при 450--550 °C и давлении 1 МПа; степень конверсии этана достигала 65--70 %. Метод впоследствии был оптимизирован компанией ICI, которая снизила температурный диапазон проведения синтеза и предложила другой катализатор. В мае 1998 года компания EVC International NV (Нидерланды) запустила опытный проект мощностью 1000 тонн в год на заводе в Вильгельмсхафене (Германия) с целью опробирования и последующего продвижения на рынке запатентованного процесса окислительного хлорирования этана, или Ethane-to-VCM-Process. Предполагалось, что этот проект будет технологическим прорывом и станет началом работы над полномасштабным заводом, который, как ожидалось, будет запущен в 2003 году. По данным производителя, температура процесса составляет менее 500 °C, степень конверсии сырья -- 100 % по хлору, 99 % по кислороду и более чем 90 % по этану; выход винилхлорида превышает 90 %. В сентябре 1999 года EVC подписала с компанией Bechtel Group, Inc. (США) соглашение о постройке полноценного производства в Вильгельмсхафене, однако из-за финансовых проблем проект не был осуществлён. После поглощения в 2001 году корпорацией INEOS компании EVC дальнейшая судьба проекта Ethane-to-VCM-Process не известна.

2.4 Сбалансированный по хлору метод на основе этилена

2.4.1 Общее описание метода

В настоящее время самым современным и наиболее эффективным с экономической точки зрения является сбалансированный процесс окислительного хлорирования этилена. В 2006 году более 95 % винилхлорида было произведено этим методом.

В основанном на этилене процессе, винилхлорид получается пиролизом дихлорэтана, который в свою очередь синтезируется каталитической реакцией хлора с этиленом. Хлороводород, получаемый в результате дегидрохлорирования дихлорэтана, вступает в реакцию с кислородом и этиленом в присутствии медного катализатора, образуя дихлорэтан и тем самым, уменьшая расход элементарного хлора, используемого для прямого хлорирования этилена. Этот процесс известен как оксихлорирование. Для получения товарного продукта, винилхлорид очищают дистилляцией, а побочные хлорорганические продукты либо выделяют для получения растворителей, либо подвергают термодеструкции для вовлечения хлороводорода обратно в процесс.

Метод сбалансированный по хлору на основе этилена является самой современной, распространённой и экономически наиболее эффективной технологией производства. Технология базируется на использовании дешевого и доступного этилена и хлора. Однако остальные способы, хоть и являются устаревшими, до сих пор существуют на многих предприятиях, ориентированных (по разным причинам) на использование дорогостоящего ацетилена.

Среди рассмотренных методов более подробно рассматривается производство винилхлорида из этилена сбалансированным по хлору способом.

2.5 Побочные продукты и методы их утилизации

Кубовые остатки после ректификации 1,2-дихлорэтана и винилхлорида представляют собой в основном смесь полихлоридов этана и этилена и смолистые вещества. На 1т винилхлорида в процессе гидрохлорирования ацетилена получается 20 кг побочных продуктов, в комбинированном процессе из ацетилена и этилена- 80кг, в сбалансированном процессе 50-110кг.

Побочные продукты после осветления можно использовать частично для переработки в три- и перхлорэтилен, частично в четыреххлористый углерод. Вторичные кубовые остатки(10-20 %) сжигаются, при этом получается хлористый водород, который можно использовать для оксихлорирования этилена или гидрохлорирования ацетилена.

3. ПРОИЗВОДСТВО ВИНИЛХЛОРИДА ИЗ ЭТИЛЕНА СБАЛАНСИРОВАННЫМ ПО ХЛОРУ СПОСОБОМ

Процесс получения винилхлорида сбалансированным методом из этилена состоит из шести стадий:

1. синтез 1,2-дихлорэтана прямым жидкофазным хлорированием этилена,

2. синтез 1,2-дихлорэтана окислительным каталитическим хлорированием этилена,

3. промывка, осушка, ректификация 1,2-дихлорэтана,

4. термическое обьемное дегидрохлорирование 1,2-дихлорэтана,

5. разделение продуктов дегидрохлорирования 1,2-дихлорэтана,

6. ректификация винилхлорида.

3.1 Теоретические основы процесса

Сбалансированный по хлору способ получения винилхлорида из этилена базируется на трех основных реакциях.

Следовательно, он является комбинацией трех процессов: прямого аддитивного хлорирования этилена в 1,2 -дихлорэтан, термического дегидрохлорирования 1,2- дихлорэтана в винилхлорид и окислительного хлорирования этилена в 1,2 -дихлорэтан с помощью хлороводорода, образовавшегося при дегидрохлориировании.

Оксихлорирование протекает с выделением значительного количества тепла, тогда как пиролиз протекает с поглощением значительного количества тепла, а HCl, получаемый при пиролизе, используется в процессе оксихлорирования. Следовательно, необходимо подобрать условия для проведения этих реакций в одном аппарате, что позволит приблизить процесс к адиабатическому и обеспечит протекание процесса пиролиза, т.е. реализовать совмещенно- комбинированный процесс получения 1,2-дихлорэтана и винилхлорида. Этот процесс требует больших затрат энергии. К тому же он имеет низкую селективность. Зависимость изменения энергии Гиббса этой реакции дегидрохлорирования представлена на рис.1 как видно из рис. 1, изменение знака энергии происходит для этой реакции при =500 К, а выше этой температуры преимущественно протекает отщепление НС1. Реакция 2 протекает медленно по молекулярному механизму.

Интерес к термическому дегидрохлорированию был вызван возможностью замены прежнего метода отщепления НС1 под действием щелочи. Этот способ используется также для получения винилиденхлорида и других продуктов. Но в этом процессе образуется много сточных вод (щелочных), а также отходов соли (он требует большого расхода щелочи).

Термическое дегидрохлорирование позволило устранить эти недостатки: реакция протекает при температуре 500°С только под воздействием температуры или в присутствии небольшого количества хлора (в качестве инициатора) и гетерогенных контактов. Поскольку процесс эндотермический, его, как правило, осуществляют в трубчатых реакторах, обогреваемых топочными газами. Такой способ производства винилхлорида оказался более экономичным (на 30 %) по сравнению с щелочным дегидрохлорированием 1,2-дихлорэтана и на 14 % -- по сравнению с гидрохлорированием ацетилена.

В этом совмещенном процессе из этилена, хлора и кислорода получается винилхлорид в отсутствие НС1. При этом и себестоимость получаемого мономера снижается на 25--30 % по сравнению с методом, основанным на гидрохлорировании ацетилена.

В этом совмещенном процессе из этилена, хлора и кислорода получается винилхлорид в присутствии HCl. При этом и себестоимость получаемого мономера снижается на 25-30% по сравнению с методом, основанным на гидрохлорировании ацетилена.

3.2 Технологическое оформление процесса получения винилхлорида сбалансированным по хлору методом

Технологическое оформление процесса получения винилхлорида сбалансированным по хлору методом

Первой стадией этого комбинированного процесса является прямое хлорирование этилена до 1,2-дихлорэтана, которая осуществляется в колонном аппарате 1. Хлор и этилен подаются в нижнюю часть хлоратора через соответствующие барботеры.

Хлоратор до определенного уровня заполняют катализаторным раствором(FeCl 3 в 1,2-дихлорэтане). Теплота реакции в нем отводится за счет испарения 1,2-дихлорэтана. Пары 1,2-дихлорэтана конденсируются в холодильнике-конденсаторе 2 и конденсат собирается в сборнике 3. Далее часть конденсата в виде рецикла возвращается в хлоратор 1 для отвода тепла и поддержания определенного уровня. В данном случае наблюдается типичный жидкофазный процесс, в котором теплота реакции отводится за счет испарения продукта. Но это тепло не используется. Более того, образуется большое количество нагретой воды. Следовательно, необходимо вводить систему использования теплоты реакции. Остальная часть конденсата направляется на ректификацию в колонну 16. Кроме того, в сборнике 3 отделяются растворенные газы, которые во избежание потерь 1,2-дихлорэтана дополнительно охлаждают рассолом в холодильнике 2, а затем очищают и выводят из системы.

Процесс оксихлорирования осуществляется в реакторе 5 под давлением 0,5 МПа и при температуре 200--280°С. Катализатор в нем находится в псевдоожиженном слое. Чистый этилен, рециркулирующий газ, воздух и хлорид водорода смешиваются предварительно в смесителе 4. Способ смешения и соотношение компонентов должны быть таковыми, чтобы не образовывались взрывоопасные смеси.

В реакторе 5 тепло отводится за счет встроенного змеевика, в котором испаряется водный конденсат. В результате образуется технический пар, который используется в этом же производстве, например при ректификации.

Полученная реакционная парогазовая смесь, содержащая непрореагировавшие этилен, кислород, хлорид водорода, 1,2-дихлорэтан и инертные газы, поступает в нижнюю часть холодильника- смешения 7. Последний орошается водной смесью 1,2-дихлорэтана, циркулирующей через теплообменник 8 насосом 9. Часть раствора хлороводородной кислоты непрерывно отводится из системы. Естественно, эта кислота загрязнена 1,2-дихлорэтаном и поэтому может быть использована при его производстве или должна быть очищена от него для последующего использования.

Охлажденную парогазовую смесь направляют в скруббер 10 для нейтрализации оставшегося НС1. Скруббер орошается раствором NaOH, который подается насосом 9. Часть щелочного раствора непрерывно выводится из системы (этот раствор содержит щелочь, соль и растворенный 1,2-дихлорэтан). Поэтому необходимо разработать способы очистки и утилизации всех продуктов из этого раствора.

В скруббере 10 парогазовая смесь очищается от НС1 и С0 2 и окончательно охлаждается в холодильнике-конденсаторе 2. Конденсат отделяется от газов в сепараторе 11 поступает во флорентийский сосуд 12, в котором более тяжелый 1,2-дихлорэтан отделяется от воды. Эта вода используется для разбавления щелочи.

Циркулирующий газ (смесь этилена, кислорода и инертных веществ) компрессором 13 возвращается в смеситель 4. Чтобы избежать накопления инертов в системе, часть газа выводится из системы для очистки от унесенного 1,2-дихлорэтана. Так как 1,2-дихлорэтан, выходящий из флорентийского сосуда 12, содержит воду (по растворимости), то он направляется в колонну 14 для гетеро- азеотропной осушки. Верхний водный слой флорентийского сосуда также может быть использован для приготовления щелочи или должен быть очищен от 1,2-дихлорэтана гетероазеотропной ректификацией. При этом 1,2-дихлорэтан будет отделен от воды в виде гетероазеотропа.

Таким образом, в ректификационную колонну 16 направляют 1,2-дихлорэтан, полученный как хлорированием, так и оксихлорированием этилена. В этой колонне 1,2-дихлорэтан отделяется от высших хлоридов, которые могут применяться в качестве растворителя. Очищенный же 1,2-дихлорэтан может использоваться в качестве полупродукта при производстве винилхлорида. В этом случае он собирается в емкости 17, а из нее компрессором 13 направляется в печь 18, в которой при давлении 1,5--2,0 МПа и температуре 500 °С он пиролизуется до винилхлорида и НС1.

После пиролиза реакционная парогазовая смесь проходит холодильник-смешения 19. Этот холодильник орошается захоложенным в холодильнике 8 1,2-дихлорэтаном. Парогазовая смесь далее охлаждается в холодильнике-конденсаторе 2 и направляется в ректификационную колонну 20. Эта колонна, работающая под давлением, предназначена для отделения НС1. При этом давлении НС1 конденсируется и может возвращаться в виде флегмы, а несконденсированные газы после сепаратора (главным образом НС1) воз вращаются в смеситель 4 для проведения оксихлорирования. Кубовый продукт колонны 20 (главным образом винилхлорид и 1,2-дихлорэтан) направляется в ректификационную колонну 21 через дроссельный вентиль 6. В этой колонне в качестве дистиллята выделяется мономерный винилхлорид (99,9 %-ной чистоты). Кубовый продукт, главным образом 1,2-дихлорэтан, возвращается в колонну 16.

3.3 Принципы в технологии получения винилхлорида сбалансированным по хлору методом

Технология получения винилхлорида сбалансированным по хлору методом (комбинация хлорирования и оксихлорирования этилена с термическим дегидрохлорированием 1,2-дихлорэтана) выступает одним из наиболее интересных примеров реализации принципов создания технологий 00 и НХС. Технология является непрерывной. По химической составляющей ее, несмотря на наличие трех отдельных реакторных подсистем, можно отнести к двух- стадийной. Это вызвано тем, что каждая из цепей химических превращений, ведущих к винилхлориду, состоит из двух стадий: оксихлорирование + термический пиролиз и хлорирование + термический пиролиз.

Эти два параллельных процесса связаны, во-первых, рециркуляционным потоком по хлороводороду, что позволяет почти полностью его утилизировать, а во-вторых, общей стадией термического пиролиза, использующей как дихлорэтан оксихлорирования, так и дихлорэтан хлорирования этилена. Суммарные потери хлора составляют всего 11--12 кг, а этилена 23--36 кг на тонну товарного винилхлорида. Большая доля потерь этилена связана с процессом его полного окисления на стадии оксихлорирования (около 19 кг на тонну винилхлорида), а хлора на стадии очистки сточных вод и оксихлорирования (4--6 и 3,4--3,7 кг на тонну винилхлорида соответственно). Таким образом, комбинирование двух процессов в одной технологии позволяет с использованием рециркуляции по образующемуся хлороводороду свести потери сырья к минимуму и одновременно обеспечить эффективную защиту окружающей среды от хлора и хлороводорода. В данном случае реализуется принцип организации рециркуляционных потоков по компонентам. Другой иллюстрацией данного принципа служит рецикл по 1,2-дихлорэтану, охватывающий аппараты 16-21 технологической схемы. Этот поток обеспечивает полную конверсию 1,2-дихлорэтана на стадии термического пиролиза и используется из-за того, что конверсия за один проход на этой стадии не превышает 48--50 %.

Технология базируется на использовании дешевого и доступного этилена и хлора. Обладает высокой эффективностью в целом, хотя отдельные ее составляющие различаются по этому показателю. Например, хлорирование этилена обладает более высокой селективностью по сравнению с оксихлорированием и тем более с термическим пиролизом. Стадии оксихлорирования и хлорирования имеют высокие конверсии за один проход. Рециркуляция части реакционных газов на стадии оксихлорирования связана в основном с необходимостью обеспечения газодинамического и концентрационного режимов аппарата с кипящим слоем. Более того, в настоящее время доказано, что введение в исходные реагенты продуктов полного окисления дает возможность повысить селективность оксихлорирования.

Эффективное использование тепла (принципы разработки процессов с низким энергопотреблением полноты использования энергии системы) в данной технологии достигается не только за счет ее утилизации в подсистеме ректификационного разделения, но и за счет обеспечения теплообмена между экзотермичными (хлорирование, оксихлорирование) и эндотермичными (пиролиз) стадиями процесса.

Принцип полноты выделения продуктов из реакционной смеси используется достаточно полно, поскольку как целевой продукт, так и 1,2-дихлорэтан, направляемый на пиролиз, должны иметь высокую чистоту.

В рассматриваемой технологии используется принцип минимального расходования воды, так как в ней практически отсутствуют промывные скрубберы, а хлороводород выделяют в ректификационной колонне при повышенном давлении. Использование для хлорирования этилена совмещенного процесса позволяет по сравнению с традиционными реакторами наиболее интенсивно применять низкопотенциальное тепло хлорирования для предварительного фракционирования продуктов реакции (снижение энергозатрат на выделение 1,2-дихлорэтана на 50-70 %). Кроме того, снижается почти в три раза выход высококипящих полихлоридов.

Важной составляющей технологии является реализация принципа полноты использования газовых потоков и очистки газовых выбросов. Это связано с высокой токсичностью хлора и его соединений. В первую очередь технология обеспечивает утилизацию хлороводорода за счет реакции оксихлорирования этилена. Реакционные аппараты снабжены не только водяными, но и рассольными конденсаторами, которые дают возможность снизить выбросы хлорорганических продуктов в атмосферу за счет более высокой степени их конденсации при пониженных температурах. Выделение хлороводорода из реакционной массы пиролиза проводится ректификацией, что дает возможность непосредственно организовать его рецикл на стадию оксихлорирования, избежать процессов абсорбции его водой и, соответственно, кислотных и солевых стоков. Наконец, технология позволяет создавать линии большой единичной мощности. Реакционные подсистемы оксихлорирования и пиролиза и используемые в них реакционные аппараты дают возможность их проектирования на любую требуемую производительность. Реализация этого принципа для стадии хлорирования может быть осуществлена за счет применения параллельно работающих жидкофазных хлораторов, так чтобы вся технологическая цепочка представляла собой линию большой единичной мощности.

4. МИРОВОЕ ПРОИЗВОДСТВО ВИНИЛХЛОРИДА

Винилхлорид является одним из крупнейших по объему органических полупродуктов мирового химического производства, уступая лишь этилену (113 млн. тонн в 2008 году), пропилену (73 млн. тонн в 2008 году), этанолу (52 млн. тонн в 2008 году), бензолу (41 млн. тонн в 2008 году), метанолу (40 млн. тонн в 2008 году), терефталевой кислоте (39 млн. тонн в 2008 году). Производство винилхлорида является третьим после полиэтилена и окиси этилена по значимости направлением использования этилена как важнейшего химического сырья и составляет 11,9 % его мирового потребления (по данным на 2008 год). Мировое производство винилхлорида в 2008 году составило около 36,7 млн. тонн (99 % по отношению к 2007 году), что составляет 85 % всех мировых производственных мощностей (в 2007 году -- 90 %). По прогнозным данным компании SRI Consulting, текущее сокращение потребления прекратится и в ближайшие пять лет (до 2013 года) будет наблюдаться рост потребления в размере 3,4 % в год и 2,5 % в последующие пять лет (с 2013 по 2018 гг.)

Крупнейшим потребителем винилхлорида в мире является Китай: около 30% всего мирового производства; на втором месте США и Канада, приблизительно с 20 % (по состоянию на 2008 год) Крупнейшим производителем винилхлорида в мире (по объёму производственных мощностей) являются США: 8,24 млн тонн по данным на 2003 год (для сравнения -- в 1967 году мощности составляли 1,26 млн тонн, а в 1960 году всего 0,67 млн. тонн)

Вклад России в мировое производство винилхлорида довольно скромный: около 1,5 % от годового глобального выпуска и место во второй двадцатке стран-производителей (по состоянию на 2008 год). При этом технологическое оснащение серьёзно отстаёт от мирового: почти 30 % мощностей используют устаревшую ацетиленовую технологию. Производство винилхлорида в России практически полностью (более 99 % всего объёма) ориентировано на выпуск поливинилхлорида, являясь при этом одним из крупнейших направлений потребления хлора в российской химической промышленности (18 % по данным на 2004 год). В 2010--2013 годах компанией ООО «РусВинил» планируется ввод в эксплуатацию комплекса по производству ПВХ (включая и производство винилхлорида) в Кстовском районе Нижегородской области мощностью 330 тыс. тонн в год. Учредителями совместного предприятия являются компания «Сибур» и бельгийская компания SolVin -- совместная дочерняя компания международной химико-фармацевтической группы Solvay и немецкого концерна BASF.

ЗАКЛЮЧЕНИЕ

В процессе изучения были проанализированы и систематизированы имеющиеся литературные данные, относящиеся к производству винилхлорида; изучены основные характеристики винилхлорида; рассмотрены промышленное производство, технологические аспекты; изучена технология получения винилхлорида из этилена сбалансированным по хлору способом, теоретические основы процесса, технологическое оформление, принципы в технологии получения винилхлорида.

Так, рассмотренный метод синтеза винилхлорида гидрохлорированием ацетилена в настоящее время мало перспективен, хотя существующие установ-ки еще эксплуатируются. Причиной этого является применение дорого-стоящего ацетилена, что при получении винилхлорида дополняется высокой токсичностью сулемы, а при синтезе хлоропрена - низким выходом продукта.

Комбинированный процесс на основе ацетилена и этилена позволяет снизить себестоимость винилхлорида на 6--7 % по сравнению с ацетиленовым процессом. Метод позволил заменить половину ацетилена на более дешёвый этилен, а также утилизировать хлороводород, тем самым довести почти до 100 % полезное использование хлора.

В последнее время все описанные методы синтеза хлористого винила вытесняются другим комбинированным способом, сбалансированном по хлору, при котором полностью исключается применение ацетилена и добавляется стадия аддитивного оксихлорирования этилена. С учетом роста потребности в поливинилхлориде в России чрезвычайно актуальным является создание производств винилхлорида большой мощности по сбалансированной схеме на основе относительно дешевого этан-этиленового сырья.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Потехин В.М., Потехин В.В. Основы теории химических процессов технологии органических веществ и нефтепереработки: учебник для вузов/В.М. Потехин.-2-е изд., испр. и доп.- М.: Химиздат, 2007.- 944 с.

2. Органическая химия перевод с нем./Под ред. проф. В.М. Потапова.- М.: Химия, 2014.-832с.

3. Физер Л., Физер М. Органическая химия углубленный курс том.1 перевод с англ. /Под ред. д.х.н. Н. С. Вульфсона.- М.: Химия, 1999.- 688с.

4. Дьячкова Т. П., Орехов В.С Химическая технология органических веществ: учеб. пособие /Т.П. Дьячкова, В.С.Орехов. - Тамбов: Изд-во Тамб. гос. техн. ун-та, 2012. - 172 с.

5. Писаренко А.П., Хавин З.Я. Курс органической химии: учебник для нехимических спец. Вузов/А.П.Писаренко, З.Я.Хавин.-4-е изд., перераб. и доп.- М.: Высшая школа, 2005.- 527с.

6. Тимофеев В.С., Серафимов Л.А. Принципы технологии основного органического и нефтехимического синтеза: учеб. пособие для вузов /В.С.Тимофеев, Л.А.Серафимов. - 2-е изд., перераб. - М.: Высшая школа, 2011. - 536 с.

7. Лебедев Н.Н. Химия и технология основного органического синтеза/Н.Н. Лебедев. - М.: Химия, 1988. - 582 с.

8. Кутепов А.М., Бондарева Т.И. Общая химическая технология/А.М. Кутепов, Т.И. Бондарева. - М.; ИКЦ «Академкнига» 2004. -357с.

9. Промышленные хлорорганические продукты / Под ред. Л.А. Ошина. - М.: Химия, 1978. - 656 с.

10.Юкельсон И.И. Технология основного органического синтеза/И.И.Юкельсон. - М.: Химия, 2010. - 648с.

11. Флид М.Р., Трегер Ю.А. Винилхлорид: химия и технология/М.Р. Флид, Ю.А. Трегер. -- М.: Калвис, 2008. -- 584с.

12. Потапов В.М. Органическая химия: Учебник для техникумов/В.М.Потапов.-4-е изд., перераб. и доп.- М.: Химия, 2002.- 448с.

13. Дядченко В.П., Трушков И.В. Синтетические методы органической химии/В.П.Дядченко, И.В.Трушков. -- М.: МГУ им. Ломоносова, Химический факультет, 2014. -- С. 47.

14. Мухленов И.П. Общая химическая технология/И.П.Мухленов.- М.: Альянс, 2009.- 255с.

15. Травень В. Ф. Органическая химия: Учебник для вузов/ В. Ф. Травень. -- М.: ИКЦ «Академкнига», 2004.-583с.

16. Пат 2250891Россия МПК 7 С07С21/06,С07С17/25.Способ получения винилхлорида Институт катализа им Г.К. Борескова. Сибирского отделения Российской академии наук, Бальжинимаев Б.С., Паукштис Е.А., Загуруйко А.Н., Симонова Л.Г., Малышева Л.В опубл. 26.12.2003

17. Пат 2133729 Россия C07C17/154, C07C21/06 способ каталитического оксихлорирования этана до винилхлорида. ЭФК Технологи АГ, Иан Майкл Клег; Рей Хардман опубл. 27.07.1999

18. Пат 2072976 Россия C07C21/06, C07C17/02, C07C17/156 Способ получения винилхлорида Научно-исследовательский институт "Синтез" с конструкторским бюро Занавескин Л.Н.; Трегер Ю.А.; Феофанова Н.М.; Пащенко Л.Е опубл. 10.02.1997

Размещено на Allbest.ru

Подобные документы

    Общие сведения о винилхлориде - бесцветном газе, сильном яде, оказывающем мутагенное, канцерогенное и тератогенное действие. История открытия винилхлорида, его химические свойства и методы получения. Каталитическое газофазное гидрохлорирование ацетилена.

    презентация , добавлен 10.08.2015

    Способы получения винилхлорида из ацетилена. Газофазное, жидкофазное гидрохлорирование ацетилена. Примеры утилизации хлористого водорода. Термодинамические параметры реакций гидрохлорирования в газовой фазе и значения равновесных выходов хлорэтанов.

    реферат , добавлен 12.01.2014

    Аналитический обзор методов производства поливинилхлорида. Физико-химические основы производства винилхлорида. Производство поливинилхлорида методом блочной полимеризации. Эмульсионная полимеризации винилхлорида. Полимеризация винилхлорида в суспензии.

    реферат , добавлен 24.05.2012

    Выбор и обоснование технологической схемы и аппаратурного оформления фазы производства. Описание технологического процесса изготовления поливинилхлорида: характеристика сырья, механизм полимеризации. Свойства и практическое применение готового продукта.

    курсовая работа , добавлен 17.11.2010

    Понятие алкинов – алифатических непредельных углеводородов ряда ацетилена, в молекулах которых между углеродными атомами одна тройная связь. Простейшие представители, получение алкинов. Физические и химические свойства. Реакции присоединения и замещения.

    презентация , добавлен 12.05.2011

    Общая формула альдегидов и кетонов, их активность, классификация, особенности изомерии и номенклатура, основные способы получения, реакционноспособность и химические свойства. Реакции окисления, присоединения, замещения, полимеризации и конденсации.

    реферат , добавлен 22.06.2010

    Исходные мономеры для синтеза поливинилхлорида (ПВХ), его физические и физико-химические свойства. Способы получения винилхлорида. Способы получения ПВХ на производстве. Производство ПВХ эмульсионным способом. Основные стадии получения суспензионного ПВХ.

    реферат , добавлен 19.02.2016

    Реакция присоединения протона енолят-аниона к атому углерода или кислорода, механизм их взаимодействия с алкилгалогенидами. Сущность и примеры таутомерного превращения. Реакции альдольного присоединения и конденсации, катализаторы и частный случай.

    лекция , добавлен 03.02.2009

    Классификация альдегидов, строение, нахождение в природе, биологическое действие, применение. Номенклатура кетонов, история открытия, физические и химические свойства. Реакции нуклеофильного присоединения. Химические методы идентификации альдегидов.

    презентация , добавлен 13.05.2014

    Физические и химические свойства хлора. Химическая активность, соединение с другими элементами, распространенность в природе в чистом виде и в соединениях. Биологическое значение и применение хлора. Основная форма поступления в организм – хлорид натрия.

Производство Винилхлорида

Винилхлорид СН2=СНС1 в основном применяется для получения поливинилхлорида.

Винилхлорид можно получить различными способами:

гидрохлорированием ацетилена в газовой или жидкой фазах в присутствии катализатора:

дегидрохлорированием 1,2-дихлорэтана (в жидкой фазе) гид-роксидом натрия в водной или спиртовой среде:

термическим дегидрохлорированием 1,2-дихлорэтана в паровой фазе в присутствии катализаторов, инициаторов или без них:

хлорированием этилена в газовой фазе в объеме, либо в присутствии катализатора, например оксида алюминия:

Рассмотрим несколько наиболее распространенных промышленных способов производства винилхлорида из ацетилена и этилена.

Получение винилхлорида из ацетилена

Теоретические основы процесса

Распространенным способом получения винилхлорида является гидрохлорирование ацетилена. Реакция присоединения хлорида водорода к ацетилену типична для соединении с тройной связью:

По своей экзотермичности она почти в два раза превосходит реакцию гидрохлорирования олефинов.

Реакция гидрохлорирования ацетилена в некоторой степени обратима. Вместе с тем при умеренных температурах равновесие почти полностью смещено вправо, так как константы равновесия равны 8-Ю4 при 200°С и 7-Ю2 при 300°С. Причем присоединение НС1 к ацетилену протекает последовательно -- вначале образуется винилхлорид, а затем 1,1-дихлорэтан:

Следовательно, для получения винилхлорида требуется использовать селективные катализаторы, ускоряющие только первую реакцию. Наиболее приемлемыми для этого оказались соли Hg(II) и Си(1). При использовании сулемы HgС12 также сильно ускоряется реакция гидратации ацетилена с получением ацетальдегида (реакция Кучерова). В связи с этим процесс проводят в газовой фазе при температурах 150--200 °С, используя предварительно осушенные реагенты. При этом образуется небольшое количество ацетальдегида и 1,1-дихлорэтана (=1 %). Вместе с тем можно рассмотреть возможность совместного получения ацетальдегида и винилхлорида. В этом случае необходимо проводить процесс в жидкой фазе.

Для жидкофазного гидрохлорирования более пригодна соль Си(1), так как она слабо дезактивируется и плохо ускоряет взаимодействие ацетилена с водой. (Следовательно, этот катализатор непригоден для совместного получения винилхлорида и ацетальдегида.)

Каталитическая система представляет собой раствор Си2С12 и хлорида алюминия в хлороводородной кислоте. Однако на этом катализаторе протекает также димеризация ацетилена с образованием винилацетилена:

Для подавления этой реакции необходимо использовать концентрированную НО. В связи с этим в ходе процесса в катализа-торный раствор непрерывно подается HСl для компенсации его расхода на гидрохлорирование.

Каталитическое действие указанных катализаторов объясняется образованием координационных комплексов, в которых ацетилен активируется и взаимодействует с хлор-анионами. При этом имеют место переходные состояния с металл-углеродной связью или металлоорганические соединения, которые быстро разлагаются кислотой.

Первое время хлористый винил получали щелочным дегидрохлорированием 1,2 - дихлорэтана в среде метилового или этилового спирта:

СlCH 2 -CH 2 Cl+ NaOH>CH 2 =CHCl+NaCl+H 2 O

Большой расход щелочи и хлора при этом синтезе ускорил разработку и внедрение в промышленность в 40-50-х годах гидрохлорирования ацетилена:

CH?CH+HCl>CH 2 -CHCl

Который связан с применением токсичных ртутных солей как катализаторов и сравнительно дорогостоящего ацетилена.

Осуществление термического дегидрохлорирования дихлорэтана позволило избежать расхода щелочи и использовать образующийся хлористый водород для гидрохлорирования ацетилена. Так появились комбинированные способы синтеза хлористого винила из ацетилена и этилена, сбалансированные по хлору.

На 2010 год существуют четыре основных способа получения винилхлорида, реализованные в промышленных масштабах. Винилхлорид можно получить различными способами :

1. Гидрохлорированием ацетилена в газовой или жидкой фазах в присутствии катализатора:

2. Дегидрохлорированием 1,2 - дихлорэтана (в жидкой фазе) гидроксидом натрия в водной или спиртовой среде:

СН 2 С1 - СН 2 С1 + NaOH?> СН 2 = CHCl + NaCl + Н 2 0

3. Термическим дегидрохлорированием 1,2 - дихлорэтана в паровой фазе в присутствии катализаторов, инициаторов или без них:

СН 2 C1 = CH 2 С1 > CH 2 =CHCl+HCl

4. Хлорированием этилена в газовой фазе в объеме, либо в присутствии катализатора, например оксида алюминия:

CH 2 =CH 2 +Cl 2 >CH 2 =CHCl+HCl

В данной курсовой работе мы рассмотрим более подробно следующие способы получения винилхлорида: гидрохлорирование ацетилена в газовой и жидкой фазах в присутствии катализатора; и комбинированный способ синтеза хлористого винила из ацетилена и этилена.

Газофазное гидрохлорирование ацетилена

Процесс проводится в газовой фазе в присутствии катализатора. Для достижения высокой конверсии исходных реагентов (98-99%) и селективности (? 99%) в качестве катализатора применяется дихлорид ртути, нанесенный на активный уголь.

Химия процесса выглядит следующим образом:

Получение ацетилена:

Гидрохлорирование ацетилена:

Активный уголь в этой каталитической системе является не инертным носителем, а активным компонентом и поэтому его химическая природа и структура оказывает заметное влияние на свойства катализатора. Для промышленного катализатора важнейшими являются экономические показатели - стабильность катализатора, его производительность и селективность. Эти показатели определяются в основном деактивацией катализатора, связанной с уносом и восстановлением дихлорида ртути до металлической ртути, что в определенной степени зависит от природы и структуры носителя.

Структура носителей определяется его пористосью, т.е. наличие макро-, микро- и переходных пор. Линейные размеры участвующих в реакции гидрохлорирования молекул по расчетам равны: r C H Cl =0,816 нм, r C H = 0,581 нм и r H Cl =0,472 нм, а образующийся по реакции промежуточный?-комплекс имеет линейный размер не менее 1,0-1,2 нм. Следовательно, микропоры с диаметром менее 1,0 нм не могут участвовать в процессе гидрохлорирования. Преобладающая роль в этом процессе принадлежит переходным порам: чем больше переходных пор, тем активнее адсорбируется дихлорид ртути и тем активнее и стабильнее катализатор. Химическая природа носителя определяется наличием поверхностных функциональных групп: карбоксильных, карбонильных и гидроксильных (фенольного и спиртового типа) и др. Увеличение содержания карбонильных групп понижает стабильность и активность катализатора, повидимому, за счет способности к восстановлению дихлорида ртути вплоть до металлической ртути, а фенольные группы могут способствовать увеличению стабильности за счет их окисления до хинонов.

Для увеличения стабильности ртутного катализатора гидрохлорирования ацетилена на специально приготовленный активный уголь вместе с хлоридом ртути наносят органические амины и их соли. Из-за высокой активности ртутного катализатора использование его кинетических возможностей весьма сложно. Это связано с тем, что, с одной стороны, реакция гидрхлорирования ацетилена весьма экзотермична, а, с другой стороны, из-за высокой летучести дихлора ртути максимальная температура проведения процесса ограничена 150-180 °C .



Поделиться