Удельный вес трансформаторного масла гк. Трансформаторное масло

Зависимость поглощения (по энергии на 1 мггц для различных интенсивностей ультразвука от расстояния до излучателя (дистиллированная вода.  

В этой же связи стоит тот экспериментальный факт, что с уменьшением вязкости трансформаторного масла при его нагревании коэффициент поглощения не уменьшается (как это должно было бы быть для волн малой амплитуды), а увеличивается.  

Что касается изменения вязкости масел при низких температурах1, то, как следует из табл. 11, заимствованной из той же работы, резкое увеличение вязкости трансформаторного масла наблюдается уже при температурах ниже минус 30 С, а для турбинного Л при температуре минус 5 С.  

Для применения в силовых трансформаторах в СССР используют в основном совтол-10, представляющий собой смесь 90 % пента-хлордифенила и 10 % трихлорбензола, который имеет в рабочем интервале температур вязкость, близкую к вязкости трансформаторного масла. Однако по своим вязкостно-температурным свойствам совтол-10 значительно уступает гексолу, представляющему собой смесь 20 % пентахлордифенила и 80 % гексахлорбутадиена. Гек-сол не застывает при температуре до - 60 С и меньше подвержен влиянию загрязнений.  

Были проведены две серии опытов. Вязкость трансформаторного масла снижали добавлением в него растворителя - керосина и растворением в нем природного газа.  

Вязкость трансформаторного масла строго нормируется. Трансформаторное масло, поступающее на предприятия, тщательно сушат в специальных установках и многократно фильтруют. Пробивное напряжение масла перед заливкой в трансформатор должно быть не менее 50 кВ при расстоянии между двумя электродами в стандартном пробойнике 2 5 мм.  


В большинстве случаев для этой цели используется сухое трансформаторное масло (ГОСТ 982 - 56), обладающее хорошими электроизоляционными свойствами. Вязкость трансформаторного масла невелика, вследствие чего его конвекция и циркуляция обеспечивают хорошее охлаждение аппаратуры, что особенно важно для приборов с нагревающимися в процессе работы элементами. Масло также защищает аппаратуру от атмосферных влияний и от вредного действия химически агрессивной среды.  

Основным достоинством трансформаторного масла являются его высокие изоляционные свойства и способность предохранить от коррозии охлаждаемый тракт. Однако вязкость трансформаторного масла значительно выше вязкости воды. Поэтому для создания циркуляции масла, по эффективности соизмеримой с циркуляцией воды, требуются большие диаметры трубопроводов и более высокий напор. Давление масла в трубопроводе ограничено 3 - 4 кгс / см2, так как из-за хорошей смачиваемости металлических поверхностей, оно при больших давлениях способно просачиваться сквозь незначительные неплотности, практически всегда имеющие место в сочленениях трубопроводов.  

В технических нормах в качестве одного из параметров, характеризующих данное масло, указывается значение v20, однако на фиг. Поэтому вязкость очищенного трансформаторного масла при 20 С определим приближенно, используя, например, формулу (I, 56) Гросса.  

Эффективность теплоотвода. / - кремнийорганической жидкостью большой вязкости. 2 - трансформаторным маслом. 3, 4 и 5 - фторорганиче-скими жидкостями (С4Р9 зМ, CSF16O и C6F120.| Применение холодильной установки для охлаждения трансформатора.  

Это может быть особенно ценным для трансформаторов предельных мощностей, которые иначе были бы нетранспортабельными. Нужно отметить, что вязкость трансформаторного масла возрастает при понижении температуры, поэтому коэффициент теплоотдачи от обмоток к маслу будет ниже, чем в обычных системах масляных трансформаторов.  

Если полость статора заполнена трансформаторным маслом, то во время пуска в зимнее время необходимо создать минимальную нагрузку или, если это допустимо, произвести пуск в режиме холостого хода и продолжать работу электродвигателя в этом режиме для прогрева всего объема масла до 15 - 20 С без подачи охлаждающей жидкости в систему охлаждения. Это необходимо по той причине, что вязкость трансформаторного масла при низких температурах велика и циркуляция его по всему контуру будет затруднена, что может привести к местным перегревам и к обугливанию изоляции обмотки даже в том случае, когда температура масла в точках замера еще не достигнет предельных значений.  

Эксплуатация электродвигателей, полость статора у которых заполнена трансформаторным маслом или для отвода тепла используется водяное охлаждение, в зимнее время на открытых площадках или в неотапливаемых помещениях имеет ряд отличительных особенностей. Это обусловлено тем, что при низких температурах вязкость трансформаторного масла повышается, а вода может замерзнуть в системе охлаждения, если не принять надлежащих мер предосторожности.  

Снижение вязкости при заданной температуре вспышки достигается сужением фракционного состава; внедрение этого мероприятия ограничено, так как при этом уменьшается выход масла. В последние годы за рубежом намечается тенденция снижения вязкости трансформаторных масел даже при условии некоторого понижения температуры вспышки.  

25.1 Контроль качества трансформаторных масел при приеме и хранении
Поступающая на энергопредприятие партия трансформаторного масла должна быть подвергнута лабораторным испытаниям в соответствии с требованиями раздела 5.14 Правил технической эксплуатации электрических станций и сетей Российской Федерации (РД 34.20.501-95).
Нормативные значения показателей качества для свежего масла в зависимости от его марки приводятся в табл. 25.1. Таблица составлена на основании требований действующих ГОСТ и ТУ к качеству свежих трансформаторных масел на момент разработки настоящего документа.

25.1.1 Контроль трансформаторного масла после транспортирования

Из транспортной емкости отбирается проба масла в соответствии с требованиями ГОСТ 2517-85. Проба трансформаторного масла подвергается лабораторным испытаниям по показателям качества 2, 3, 4, 11, 12, 14, 18 из табл. 25.1.

Показатели качества 2, 3, 4, 14, 18 определяются до слива масла из транспортной емкости, а 11 и 12 можно определять после слива масла.

Показатель 6 должен дополнительно определяться только для специальных арктических масел.

25.1.2 Контроль трансформаторного масла, слитого в резервуары

Трансформаторное масло, слитое в резервуары маслохозяйства, подвергается лабораторным испытаниям по показателям качества 2, 3, 4, 18 из табл. 25.1 сразу после его приема из транспортной емкости.

25.1.3 Контроль трансформаторного масла, находящегося на хранении

Находящееся на хранении масло испытывается по показателям качества 2, 3, 4, 5, 11, 12, 14, 18 из табл. 25.1 с периодичностью не реже 1 раза в 4 года.

25.1.4. Расширение объема контроля

Показатели качества масла из табл. 25.1, не указанные в пп. 25.1.1-25.1.3, определяются в случае необходимости, по решению технического руководителя энергопредприятия.

25.2 Контроль качества трансформаторных масел при их заливке

В электрооборудование

25.2.1 Требования к свежему трансформаторному маслу

Свежие трансформаторные масла, подготовленные к заливке в новое электрооборудование, должны удовлетворять требованиям табл. 25.2.

25.2.2 Требования к регенерированным и очищенным маслам

Регенерированные и (или) очищенные эксплуатационные масла, а также их смеси со свежими маслами, подготовленные к заливке в электрооборудование после ремонта, должны удовлетворять требованиям табл. 25.3.

25.3 Контроль качества трансформаторных масел при их эксплуатации

В электрооборудовании

25.3.1 Объем и периодичность испытаний

Объем и периодичность проведения испытаний масла указаны в разделах на конкретные виды электрооборудования, нормативные значения показателей качества приводятся в табл. 25.4.

На основании полученных результатов лабораторных испытаний масла определяют области его эксплуатации:

Область "нормального состояния масла" (интервал от предельно допустимых значений после заливки масла в электрооборудование, приведенных в табл. 25.2, столбец 4, и до значений, ограничивающих область нормального состояния масла в эксплуатации, приведенных в табл. 25.4, столбец 3), когда состояние качества масла гарантирует надежную работу электрооборудования и при этом достаточно минимально необходимого контроля показателей 1-3 из табл. 25.4 (сокращенный анализ);

Область "риска" (интервал от значений, ограничивающих область нормального состояния масла, приведенных в табл. 25.4, столбец 3, до предельно допустимых значений показателей качества масла в эксплуатации, приведенных в табл. 25.4, столбец 4), когда ухудшение даже одного показателя качества масла приводит к снижению надежности работы электрооборудования и требуется более учащенный и расширенный контроль для прогнозирования срока его службы и (или) принятия специальных мер по восстановлению эксплуатационных свойств масла с целью предотвращения его замены и вывода электрооборудования в ремонт.

Таблица 25.1

Показатели качества свежих отечественных трансформаторных масел

Показатель

Марки масел и номера нормативных документов

ТУ
38.101.1025-85

ТУ
38.401.978-93

ТУ
38.401.58107-94

ТУ
38.401.5849-92

ТУ
38.401.830-90

ГОСТ 10121-76

ТУ 38.401.1033-95

ТУ 38.101.1271-89

ТУ
38.401.927-92

стандарта на метод испытаний

1. Вязкость кинематическая, мм/с (ССт), не более при:

2. Кислотное число, мг КОН на 1 г масла, не более

ГОСТ 5985-79

3. Температура вспышки в закрытом тигле, °С, не ниже

ГОСТ 6356-75

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

ГОСТ 6307-75

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

ГОСТ 6370-83

6. Температура застывания, °С, не выше

ГОСТ 20287-91

7. Зольность, %, не более

ГОСТ 1461-75

8. Натровая проба, оптическая плотность, баллы, не более

ГОСТ 19296-73

9. Прозрачность при 5°С

Прозрачно

Прозрачно

Прозрачно

ГОСТ 982-80, п. 5.3

10. Испытание коррозионного воздействия на пластинки из меди марки M1 или М2 по ГОСТ 859-78

Выдерживает

Выдерживает

Выдерживает

Выдерживает

Выдерживает

Выдерживает

Выдерживает

Выдерживает

ГОСТ 2917-76

11. Тангенс угла диэлектрических потерь, %, не более при 90°С

ГОСТ 6581-75

12. Стабильность против окисления:

Масса летучих кислот, мг КОН на 1 г масла, не более

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Кислотное число окисленного масла, мг КОН на 1 г масла, не более

13. Стабильность против окисления, метод МЭК, индукционный период, ч, не менее

МЭК 1125(В)-92

14. Плотность при 20°С, кг/м3, не более

ГОСТ 3900-85

15. Цвет на колориметре ЦНТ, единицы ЦНТ, не более

ГОСТ 20284-74

ГОСТ 19121-73

РД 34.43.105-89

18. Внешний вид

Чистое, прозрачное, свободное от видимых загрязнений, воды, частиц, волокон

Визуальный контроль

___________________

___________________
* при 40°С,
** при -40°С.

(Измененная редакция, Изм. № 2)


Таблица 25.2

Требования к качеству свежих масел, подготовленных к заливке
в новое электрооборудование

Примечание

после заливки в электрооборудование

6581-75, кВ, не менее

Электрооборудование:
до 15 кВ включительно

до 35 кВ включительно

от 60 до 150 кВ включительно

от 220 до 500 кВ включительно

Электрооборудование:
до 220 кВ включительно

свыше 220 кВ

При применении арктического масла (АГК) или масла для выключателей (МВТ) значение данного показателя определяется стандартом на марку масла по табл. 25.1

ГОСТ 1547-84 (качественно)

Отсутствие

Отсутствие

Отсутствие (11)

Отсутствие (12)

6. Тангенс угла диэлектрических потерь при 90°С по ГОСТ 6581-75, %,

Силовые и

не более*

Электрооборудование всех видов и классов напряжений

Отсутствие

Отсутствие

При арбитражном контроле определение данного показателя следует проводить по стандарту МЭК 666-79 или (и) РД 34.43.208-95

9. Температура застывания, ГОСТ 20287-91, °С, не выше

11. Стабильность против окисления по ГОСТ 981-75:

Силовые и измерительные трансформаторы от 110 до 220 кВ включительно

Условия процесса: 120°С, 14 ч, 200 мл/мин О2

кислотное число окисленного масла, мг КОН/г масла, не более;

Силовые и измерительные трансформаторы свыше 220 до 750 кВ включительно, маслонаполненные вводы 110 кВ и выше

В соответствии с требованиями стандарта на конкретную марку масла, допущенного к применению в данном оборудовании

Для свежего масла допускается определение по стандарту МЭК 474-74 или 1125(В)-92

* Допускается применять для заливки силовых трансформаторов до 500 кВ включительно трансформаторное масло ТКп по ТУ-38.101.980-81 и до 220 кВ включительно масло ТКп по ТУ 38.401.5849-92, а также их смеси с другими свежими маслами, если значение tgd при 90°С не будет превышать 2,2% до заливки и 2,6% после заливки и кислотного числа не более 0,02 мг КОН/г, при полном соответствии остальных показателей качества требованиям таблицы.

Таблица 25.3

Требования к качеству регенерированных и очищенных масел, подготовленных к заливке
в электрооборудование после его ремонта1)

Показатель качества масла и номер стандарта на метод испытания

Предельно допустимое значение показателя качества масла

Примечание

предназначенного к заливке в электрооборудование

после заливки в электро-
оборудование

1. Пробивное напряжение по ГОСТ

Электрооборудование:

6581-75, кВ, не менее2)

до 15 кВ включительно

до 35 кВ включительно

от 60 до 150 кВ включительно

от 220 до 500 кВ включительно

2. Кислотное число по ГОСТ 5985-79, мг КОН/г масла, не более

Измерительные трансформаторы до 220 кВ включительно

3. Температура вспышки в закрытом тигле, по ГОСТ 6356-75, °С, не ниже

Силовые трансформаторы до 220 кВ включительно

При применении арктического масла (АГК) или масла для выключателей (МВТ) значение данного

показателя определяется стандартом на марку масла по табл. 25.1

Трансформаторы с пленочной или азотной защитой, герметичные измерительные трансформаторы

Допускается определение данного показателя методом Карла Фишера или хроматографическим методом по РД 34.43.107-95

Силовые и измерительные трансформаторы без специальных защит масла

по ГОСТ 1547-842) (качественно)

Электрооборудование, при отсутствии требований предприятий-изготовителей по количественному определению данного показателя

Отсутствие

Отсутствие

Электрооборудование до 220 кВ включительно

Отсутствие (11)

Отсутствие (12)

РТМ 34.70.653-83, %, не более (класс чистоты по ГОСТ 17216-71, не более)

Электрооборудование свыше 220 до 750 кВ включительно

6. Тангенс угла диэлектрических потерь при 90°C по ГОСТ 6581-75, %,

Силовые трансформаторы до 220 кВ включительно

Проба масла дополнительной обработке не подвергается

Измерительные трансформаторы до 220 кВ включительно

Силовые и измерительные трансформаторы св. 220 до 500 кВ включительно

Силовые и измерительные трансформаторы св. 500 до 750 кВ включительно

Электрооборудование всех видов и классов напряжения

Отсутствие

Отсутствие

Силовые трансформаторы до 220 кВ включительно

При арбитражном контроле определение данного показателя

4-метилфенол или ионол), по РД 34.43.105-89, % массы, не менее

Силовые и измерительные трансформаторы до 750 кВ включительно

следует проводить по стандарту МЭК 666-79 или (и) РД 34.43.208-95

9. Температура застывания по ГОСТ 20287-91, °С, не выше

Электрооборудование, заливаемое арктическим маслом

Трансформаторы с пленочной защитой

11. Стабильность против окисления по ГОСТ 981-753)

Силовые и измерительные трансформаторы свыше 220 до 750 кВ включительно

Условия процесса: 130°С, 30 ч, 50 мл/мин О2

кислотное число окисленного масла, мг КОН/г масла, не более

массовая доля осадка, %, не более

Отсутствие

Электрооборудование:

73, %, не более

до 220 кВ включительно

св. 220 до 500 кВ включительно

св. 500 до 750 кВ включительно

_____________________
1) Применение регенерированных и очищенных эксплуатационных масел для заливки высоковольтных вводов после ремонта не допускается, данное электрооборудование заливается после ремонта свежими маслами, отвечающими требованиям табл. 25.2.
2) В масляных выключателях допускается применять регенерированные или очищенные эксплуатационные масла, а также их смеси со свежими маслами, если они удовлетворяют требованиям настоящей таблицы (пп. 1 и 4) и имеют класс промышленной чистоты не более 12 (ГОСТ 17216-71).
3) В случае необходимости по решению технического руководителя предприятия допускается залив регенерированного и очищенного эксплуатационного трансформаторного масла в силовые и измерительные трансформаторы до 500 кВ включительно, если стабильность против окисления будет соответствовать норме на масло ТКп (см. табл. 25.1), а остальные показатели качества будут удовлетворять требованиям настоящей таблицы.

Таблица 25.4

Требования к качеству эксплуатационных масел

Показатель качества масла и номер

Значение показателя качества масла

Примечание

стандарта на метод испытания

ограничивающее область нормального состояния

предельно допустимое

1. Пробивное напряжение по ГОСТ

Электрооборудование:

6581-75, кВ, не менее

до 15 кВ включительно

до 35 кВ включительно

от 60 до 150 кВ включительно

от 220 до 500 кВ включительно

2. Кислотное число по ГОСТ 5985-79, мг КОН/г масла, не более

3. Температура вспышки в закрытом тигле по ГОСТ 6356-75, °С, не ниже

Силовые и измерительные трансформаторы, негерметичные маслонаполненные вводы

Снижение более чем на 5°С в сравнении с предыдущим анализом

Трансформаторы с пленочной или азотной защитой, герметичные маслонаполненные вводы, герметичные измерительные трансформаторы

Допускается определение данного показателя методом Карла Фишера или хроматогра-

Силовые и измерительные трансформаторы без специальных защит масла, негерметичные маслонаполненные вводы

фическим методом по РД 34.43.107-95

по ГОСТ 1547-84 (качественно)

Электрооборудование, при отсутствии требований предприятий-изготовителей по количественному определению данного показателя

Отсутствие

Отсутствие

ГОСТ 6370-83, % (класс чистоты по ГОСТ 17216-71, не более);

Электрооборудование до 220 кВ включительно

Отсутствие (13)

Отсутствие (13)

РТМ 34.70.653-83, %, не более (класс чистоты по ГОСТ 17216-71, не более)

Электрооборудование свыше 220 до 750 кВ включительно

6. Тангенс угла диэлектрических потерь по ГОСТ 6581-75, %, не более,

Силовые и измерительные трансформаторы, высоковольтные вводы:

Проба масла дополнительной обработке не подвергается

при температуре 70°С/90°С

110-150 кВ включительно

Норма tgd при 70°С

220-500 кВ включительно

факультативна

Силовые трансформаторы, герметичные высоковольтные вводы, герметичные измерительные трансформаторы до 750 кВ включительно

Негерметичные высоковольтные вводы и измерительные трансформаторы до 500 кВ включительно

Трансформаторы без специальных защит масла, негерметичные маслонаполненные вводы свыше 110 кВ

Силовые и измерительные трансформаторы, негерметичные высоковольтные вводы, свыше 110 кВ

Определение данного показателя производится по РД 34.43.105-89

Трансформаторы с пленочной защитой, герметичные маслонаполненные вводы

Допускается определение хроматографическим методом по РД 34.43.107-95

Трансформаторы и вводы свыше 110 кВ

Определение данного показателя производится хроматографическими методами по РД 34.43.206-94 или
РД 34.51.304-94

_________________
* Показатель 11 рекомендуется определять в случае обнаружения в трансформаторном масле значительных количеств СО и СО2 хроматографическим анализом растворенных газов, которые свидетельствуют о возможных дефектах и процессах разрушения твердой изоляции.

(Измененная редакция, Изм. № 1)

25.3.2 Расширенные испытания трансформаторного масла

Необходимость расширения объема испытаний показателей качества масел и (или) учащения периодичности контроля определяется решением технического руководителя энергопредприятия.

25.3.3 Требования к трансформаторным маслам, доливаемым в электрооборудование

Трансформаторные масла, доливаемые в электрооборудование в процессе его эксплуатации, должны удовлетворять требованиям табл. 25.4, столбец 3.

Масляные выключатели и реакторную аппаратуру. В реакторном оборудовании они служат средой для гашения дуги.

Требования

Электроизоляционные качества, которыми обладают трансформаторные масла, зависят от диэлектрических потерь. Диэлектрическую прочность масел для трансформаторов способны сильно уменьшить вода и разнообразные волокна. Следовательно, этих веществ в его составе быть не должно. Важным параметром является температура застывания. Чтобы сохранить подвижность на холоде, этот показатель у рабочей жидкости должен составлять - 45 °С и ниже. Чтобы тепло отводилось с максимальной эффективностью, жидкость должна иметь минимальную вязкость при температуре вспышки, которая для различных марок не должна быть меньше 150-95 °С.

Самый важный параметр, которым обладают трансформаторные масла, это устойчивость к окислению, или свойство поддерживать постоянство характеристик при работе в течение длительного времени. Большая часть используемых сортов трансформаторных масел стабилизированы такими присадками против окисления, как ионол или агидол-1. Их действие основано на возможности вступать в реакцию с активными пероксидными радикалами, образующимися во время прохождения цепной реакции оксидирования углеводородов. Стабилизированные ионолом жидкости для трансформатора чаще всего окисляются с явно выраженным периодом индукции.

В начальной стадии масла, сохраняющие восприимчивость к присадкам, окисляются очень медленно, поскольку все появляющиеся в масле очаги окисления подавляются ингибитором. Когда присадка истощается, скорость окисления приближается к той, с какой окисляется исходное масло. Присадка тем действеннее, чем более длителен индукционный цикл окисления. Эффект от действия присадки определяется углеводородным составом трансформаторного масла и примесями прочих соединений неуглеводородного происхождения, усиливающих окисление масла (это азотистые основания, нафтеновые кислоты, кислородсодержащие продукты оксидирования).

Трансформаторные масла призваны изолировать части и узлы силовых трансформаторов, которые находятся под воздействием напряжения, отвести тепло от деталей, подвергающихся нагреву в процессе их работы, и защитить изоляцию от воздействия влаги.

Параметры

Масло трансформаторное, характеристики которого полностью определяются его содержанием, в свою очередь, в значительной мере зависит от химического состава исходного сырья и используемых методов очистки. В применяемых марках трансформаторных масел имеются отличия по химическому составу и эксплуатационным характеристикам, и предназначены они для различных целей. Для новых масляных трансформаторов требуются лишь совершенно свежие масла, которые до того не находились в эксплуатации. У каждой партии жидкости, которая используется для заливки, должен иметься сертификат фирмы-производителя. До того как залить трансформаторное масло, поступающее с нефтеперерабатывающего завода, в силовой трансформатор, необходимо провести его очистку от влаги, газов и механических примесей.

Влага может содержаться в трансформаторном масле в различной форме. Это может быть осадок, эмульсия и раствор. Трансформаторное масло перед заливкой подвергается полной очистке от влаги, содержащейся в масле в состоянии эмульсии и в форме отстоя. В качестве раствора влага не влияет в значительной степени на тангенс угла потерь и электрическую прочность, правда, содействует увеличению окисляемости жидкости для трансформаторов и ухудшению стабильности ее состава. В связи с этим получение значений напряжения пробива и тангенса угла потерь, удовлетворяющих нормам, не может служить критерием полной очистки.

Важным параметром является плотность трансформаторного масла. Ее необходимо знать, чтобы рассчитать массу продукта, поступившего на пред-приятие. Плотность трансформаторного масла позволяет узнать его углеводородный состав.

При значении давления, равном атмосферному, в растворенном состоянии в масле трансформатора может быть до 10 % воздуха. Если силовые трансформаторы оснащены пленочной и азотной защитой, то перед заливкой специальное масло должно подвергнуться дегазации, чтобы достичь остаточного содержания газа, не превышающего 0,1 % массы.

После того как очистка произведена, механических примесей в масле быть не должно.

Измерение параметров масла

Проверку параметров масел проводят, анализируя их электроизоляционные и физико-химические характеристики:

  • электрическую прочность;
  • тангенс угла потерь;
  • замер влагосодержания;
  • замер содержания газа в масле посредством абсорбциометра состоит в определении степени изменения остаточного давления в некоторой емкости после того, как в нее залиты пробы испытуемой жидкости;
  • измерение количественного состава механических примесей путем пропускания образца, растворенного в бензине, сквозь бумажный фильтр без содержания золы.

Способ определения влагосодержания масла базируется на том, что происходит выделение водорода в ходе реакции влаги, находящейся в масле, с гидридом кислорода.

Испытания трансформаторного масла

Перед тем как вводить в эксплуатацию трансформаторы, производится испытание трансформаторного масла.

Для трансформаторного оборудования, всех номинальных напряжений испытания масла из бака РПН производятся в полном соответствии с руководством предприятия-производителя. Масло для оборудования, имеющего мощность до 630 кВА, которое устанавливается в электрических сетях, разрешается не подвергать испытаниям.

Трансформаторное масло проверяется заказчиками в сертифицированной лаборатории, которая аттестована на право его испытывать.

Центрифугирование

Такой метод обработки трансформаторного масла состоит в удалении влаги и взвешенных частиц под воздействием центробежных сил. Таким образом удаляется только влага, которая находится в форме эмульсии, и частицы в твердом состоянии. Удельная масса частиц при центрифугировании должна быть больше, чем у трансформаторного масла, подвергаемого обработке. Этим способом очищают преимущественно жидкость для силовых трансформаторов, имеющих напряжение до 35 кВ, или производят ее предварительную обработку.

Фильтрование

Метод состоит в пропускании масла через перегородки пористого типа, задерживающие все содержащиеся в нем примеси.

Адсорбционная обработка

Метод очистки трансформаторного масла посредством адсорбции базируется на поглощении воды и других примесей разнообразными адсорбентами. В их качестве используются синтетические цеолиты, имеющие высокую поглощающую способность, особенно по отношению к частицам воды. Очистка трансформаторного масла цеолитами дает возможность удалить из его состава влагу, находящуюся в состоянии раствора.

Вакуумная обработка

Базовым элементом метода очистки стал дегазатор. Сырое масло сначала подогревается до температуры 50-60 °C. После этого происходит распыление масла в дегазаторе на первой его ступени. Далее оно тончайшей струйкой стекает вдоль поверхности колец Рашига. При этом первая ступень подвергается вакуумированию посредством вакуум-насоса. Выделяемые водяные и газовые пары откачиваются через воздушный фильтр и цеолитовый патрон. Из емкости дегазатора первой ступени масло самотеком проходит во вторую ступень, где оно окончательно осушается и дегазуется. На завершающем этапе трансформаторное масло проходит сквозь фильтр тонкой очистки, подаваясь в трансформатор.

Отработанное масло

Отработанное трансформаторное масло регенерируется на серийных маслорегенерационных установках с использованием силикогеля.

Трансформаторное масло ГК

Указанную маркировку техническая жидкость получила на основании способа ее производства. Масло трансформаторное ГК получают по технологии гидрокрекинга. Сырьем для его изготовления служат парафинистые сернистые нефти. Этот вид масла имеет высокие изоляционные свойства и рекомендуется к использованию в разнообразном высоковольтном оборудовании. Масло трансформаторное ГК содержит присадку ионол и обладает лучшими антиокислительными свойствами.

Трансформаторные масла и другие жидкие диэлектрики применяют для заливки электрических трансформаторов, масляных выключате­лей, систем циркуляционного охлаждения, других высоковольтных аппаратов, где их используют в качестве изолирующей и теплоотво­дящей среды, для гашения электрической дуги, возникающей между контактами выключателя, а также в качестве охлаждающего агента. Электрические аппараты работают в условиях повышенной темпера-


Показатель Норма по маркам
Масла без присадок Масла с присадками
Т22 Т30 Т46 Т57 Тп-22 Тп-30 Тп-46
Кинематическая вязкость, сСт: при 50° С при 40ºС 20-23 - 28-32 - 44-48 - 55-59 - 20-23 - - 41,4-50,6 - 61,2-74,8
Индекс вязкости, не менее
Кислотное число, мг КОН/г масла, не более 0,02 0,02 0,02 0,05 0,07 0,5 0,5
Число деэмульсации, с, не более
Цвет, ед. ЦНТ, не более 2,0 2,5 3,0 4,5 2,5 3,5 5,5
Температура, °С: вспышки (открытый тигель), не ниже застывания, не выше -15 -10 -10 - -15 -10 -10
Плотность при 20°С, кг/м 3 , не более
Зольность базового масла, %, не более 0,005 0,005 0,010 0,020 - 0,005 0,005
Стабильность против окисления: осадок после окисления, %, не более кислотное число после окисления, мг КОН/г 0,10 - 0,10 - 0,10 - - - 0,005 - 0,01 0,4 0,008 1,5

­туры (70-80 0 С). При электрических разрядах температура еще бо­лее повышается, что ускоряет процессы окисления диэлектриков и приводит к образованию нерастворимого осадка (шлама), а во время гашения электрической дуги - к образованию частиц углерода и воды.

Шлам и частицы углерода, отлагаясь на поверхности внутренних элементов электроаппарата, ухудшают теплообмен, нарушают элек­трическую изоляцию, что может явиться причиной аварии. Появле­ние воды в диэлектрике приводят к понижению его электрической прочности. Присутствие кислот вызывает коррозию металлических частей аппарата и разрушение хлопчатобумажной изоляции.



Таблица 9. Нормы качества трансформаторных масел по

ГОСТ 9972-74* и 3274-72*

Показатель Масла нефтяного происхождения марок Масло синтетическое ОМТИ
Тп-22С/Тп-22Б Тп-30 Тп-46
Вязкость кинематическая при 50 0 С, мм 2 /с 20-23 28-32 44-48 28-29
0,07/0,02 0,03 0,05 0,04
Стабильность: массовая доля осадка после окисления, %, не более 0,005/0,01 0,005 0,005 -
Кислотное число после окисления, мг КОН на 1 г масла, не более 0,1/0,35 0,6 0,7 -
Выход золы, %, не более 0,005/0,01 0,005 0,005 0,15
Число деэмульсации, мин, не более 3/5 3,0 3,0 3,0
Температура вспышки, определяемая в открытом тигле, 0 С, не ниже 186/180
Температура самовоспламенения в воздухе, 0 С, не ниже -
-15 -10 -10 -17

Примечание. Цифры в обозначении марки означают среднюю кинематическую вязкость масла.

В связи с этими важнейшими требованиями к качеству диэлектри­ка являются высокая устойчивость (стабильность) против окисле­ния, отсутствие воды и механических примесей, достаточно низкая температура застывания, высокая электрическая прочность и низкие диэлектрические потери.

Диэлектрические потери в диэлектрике обусловлены токами про­водимости, возникающими в результате процесса поляризации мо­лекул и ионов под действием переменного электрического поля. Но­сителями зарядов могут быть ионы, образующиеся вследствие дис­социации молекул, а также более крупные коллоидные частицы. Ди­электрические потери оцениваются тангенсом угла диэлектрических потерь tgδ. Чем меньше tgδ, тем ниже диэлектрические потери в масле. Значение tgδ для данного диэлектрика зависит от его темпе­ратуры и растет при нагревании масла. Электрическую прочность и tgδ определяют по ГОСТ 6581-75.

Срок службы диэлектрика в трансформаторах 5-10 лет. В связи с этим к его качеству предъявляют весьма высокие требования.

Трансформаторные масла получают из малосернистых и серни­стых нефтей. Из малосернистых нефтей вырабатывают масла двух марок: трансформаторные без присадки и трансформаторные с анти­окислительной присадкой ионол. Масла подвергают сернокислотной очистке с последующей нейтрализацией щелочью и иногда с доочи­сткой отбеливающей землей.

Из сернистых нефтей вырабатывают две марки трансформаторно­го масла: масло селективной фенольной очистки с антиокислитель­ной присадкой ионол и масло с гидрогенизационной очисткой. Мас­ла с повышенным содержанием ароматических углеводородов име­ют большую окислительную и электрическую стойкость, в меньшей степени выделяют газы при воздействии на них электрических раз­рядов. Полное удаление ароматических углеводородов из масла в процессе очистки ухудшает его антиокислительные свойства, однако, излишнее количество ароматических углеводородов, особенно полициклических, повышает tgδ трансформаторных масел. Поэтому для каждого типа масел устанавливают оптимальное соотношение нафтеновых и ароматических углеводородов. Характеристика ос­новных свойств трансформаторных масел приведена в табл. 9

Таблица 10 Основные свойства жидких и пластичных диэлектриков

Показатель Нефтяное масло Кремний-органическая жидкость ПЭСЖ-Д Вазелин конденсаторный нефтяной
трансформаторное для конденсаторов
Плотность при 20 0 С, кг/м 3 880-890 900-920 990-1000 820-840
Кислотное число, мг КОН на 1 г масла, не более 0,01-0,05 0,01-0,015 0,05-0,07 0,03-0,04
Температура застывания, 0 С, не выше -45 -45 -80 37-40
Температура вспышки паров, 0 С, не ниже - -
Зольность, %, не более 0,005 0,0015 - 0,004
Вязкость при 20 0 С, 10 -6 м 2 /c 28-30 35-40 70-80 -
Удельное объемное сопротивление при 20 0 С, Ом · м 10 12 -10 13 10 12 -10 13 10 10 -10 12 10 12 -10 13
Относительная диэлектрическая проницаемость при 20 0 С 2,1-2,4 2,1-2,3 2,6-2,0 3,8-4,0
Тангенс угла диэлектрических потерь при 20 0 С и 50 Гц 0,001-0,003 0,003-0,005 0,0002-0,003 0,0002
Электрическая прочность при 20 0 С и 50 Гц, МВ/м 15-20 20-25 18-20 20-22

Примечание. Трансформаторное масло выпускается четырех марок: ТК, Т -750, T-1500, ПТ.

Все электроизоляционные жидкости (масла) не должны содер­жать водорастворимых кислот, щелочей и механических примесей.

Вязкость трансформаторного масла является важным физиче­ским параметром, определяет процесс теплоотдачи обмоток и магнитопроводов в трансформаторах и дугогасящую способность выклю­чателей Для хорошей циркуляции масла в трансформаторах, улучшающей охлаждение обмоток и магнитопроводов, необходимы масла с малой вязкостью. В свою очередь у масла, как и других жидких диэлектри­ков, вязкость сильно возрастает при понижении температуры. При температу­ре 20°С вязкость трансформаторного масла должна быть не более 4,2°Э и не выше 2°Э при температуре 50°С.

Для измерения условной вязкости – ВУ масла применяется вискозиметр Энглера, схема которого показана на рис. 3. Латунный сосуд – 2 помещен внутрь металлического сосуда 1 так, чтобы между ними имелось пространство, заполненное водой. Оба сосуда в центре имеют отверстия, сквозь которые пропущена калиброванная трубка – 3

Схема вискозиметра Энглера.

с диа­метром внутреннего отверстия 2-3 мм. Это отверстие закрывается пробкой - 4. Латунный сосуд за­полняется испытуемой жидкостью по указательные штифты – 5. Одно­временное касание маслом всех трех остриев служит признаком правильной установки на столе, неточность установки выправляют установочными винтами на ножках прибора. Наружный сосуд 1 служит водяной баней, отку­да нагретая на электрической плитке вода равномерно передает тепло маслу. Воду перемешивают мешалкой. Благодаря значитель­ной теплоемкости воды не происходит резких колебаний температу­ры масла во время испытаний.

Перед испытаниями трансформаторного масла вискозиметр Энглера должен быть тщательно промыт и просушен. Вставив пробку - 4 в калиброванную трубку - 3 и установив под сливным отверстием мерную колбу с отметкой на узком горлышке объема в 200мл, заливают масло в латунный сосуд. Закрыв крышку, нагревают воду, перемешивая ее мешалкой - 5. Когда установится требуемая температура масла, что отмечается термометром – Т 2, сливают в колбу масло до отметки-200 мл. При этом пену во внимание не принимают. Время вытекания этого объема масла засекают секундомером.

Вязкостью масла в градусах Энглера называется отношение времени истечения 200 миллилитров масла, нагретого до температуры 50 0 С, к времени истечения такого же объема дистиллированной воды при температуре 20 0 С.

Время истечения 200 мл. воды при температуре 20 0 С называют водным числом прибора.

Наряду с условной вязкостью различают динамическую и кине­матическую. Динамическая вязкость -η вычисляется по формуле:

, Па. с,

где f – сила в (Н), действующая на твердый шарик.

Эта сила равна весу твердого шарика за вычетом (на основании закона Архимеда) веса жидкости объема шарика; r, - радиус шарика, мм; V - скорость движения шарика, м/с;

,

где k - поправочный коэффициент, учитывающий влияние стенок сосуда; r, - радиус сосуда, м; l. - высота сосуда, м; ν - кинематическая вязкость,м/с вычисляется по формуле:

,

где ρ - плотность испытуемой жидкости, кг/м 3 . Кинематическую вязкость часто измеряют в стоксах (Ст) = 10 -4 м 2 /с.

Для измерения вязкости кроме вискозиметра Энглера ис­пользуют шариковые вискозиметры, ротационные, пластовискозиметры, электроротационные и капиллярные.

Шариковые вискозиметры основаны на измерении скорости по­гружении стального шарика в испытуемой жидкости.

Ротационные вискозиметры конструктивно состоят из двух ци­линдров: наружного неподвижного и внутреннего, вращающегося во­круг вертикальной оси под действием определенной силы. Про­странство между ними заполнено испытуемой жидкостью. По затрате мощности на вращение внутреннего цилиндра или по степени замед­ления вращения его определяют вязкость жидкости. При определен­ном конструктивном исполнении ротационного вискозиметра можно совместить определение вязкости и удельного электрического со­противления испытуемой жидкости по току утечки между цилиндра­ми.

Пластовискозиметры способны, наряду с вязкостью, опреде­лять предел прочности.

Электроротационные вискозиметры позволяют непосредственно отсчитывать величину вязкости по шкале измерительного прибора.

Капилярные вискозиметры служат для измерения кинемати­ческой вязкости.

От кинематической вязкости (м 2 /с) к условной вязкости (°Э) можно перейти, используя таблицу 2.

Таблица 2

Кинематическая вязкость Град Э Кинематическая вязкость Град Э Кинематическая вязкость Град Э
м 2 /с сСт ВУ м 2 /с сСт ВУ м 2 /с сСт ВУ
0.000001 1.00 1.00 0.000024 24.0 3.43 0.000054 54.0 7.33
0.000002 2.00 1.10 0.000025 25.0 3.56 0.000055 55.0 7.47
0.000003 3.00 1.20 0.000026 26.0 3.68 0.000056 56.0 7.60
0.000004 4.00 1.29 0.000027 27.0 3.81 0.000057 57.0 7.73
0.0000045 4.5 1.34 0.000028 28.0 3.95 0.000058 58.0 7.86
0.000005 5.0 1.39 0.000029 29.0 4.07 0.000059 59.0 8.00
0.0000055 5.5 1.43 0.000030 30.0 4.20 0.000060 60.0 8.13
0.000006 6.0 1.48 0.000031 31.0 4.33 0.000061 61.0 8.26
0.0000065 6.5 1.53 0.000032 32.0 4.46 0.000062 62.0 8.40
0.000007 7.0 1.57 0.000033 33.0 4.59 0.000063 63.0 8.53
0.0000075 7.5 1.62 0.000034 34.0 4.72 0.000064 64.0 8.66
0.000008 8.0 1.67 0.000035 35.0 4.85 0.000065 65.0 8.80
0.0000085 8.5 1.62 0.000036 36.0 4.98 0.000066 66.0 8.93
0.000009 9.0 1.76 0.000037 37.0 5.11 0.000067 67.0 9.06
0.0000095 9.5 1.81 0.000038 38.0 5.24 0.000068 68.0 9.20
0.000010 10.0 1.86 0.000039 39.0 5.37 0.000069 69.0 9.34
0.000015 15.0 2.37 0.000045 45.0 6.16 0.000075 75.0 10.15
0.000020 20.0 2.95 0.000050 50.0 6.81 . 0.000080 80.0 10.8


При > 8 . 10 –5 м 2 /с (80 сСт) переход от одной системы к другой производится по формуле.



Поделиться