Современные тенденции развития биотоплива. Повышенная добыча биомассы для топлива уменьшает возможности по производству пищи

Вопросы обеспечения своего личного домашнего хозяйства необходимыми для его функционирования энергетическими ресурсами – это проблема, которая в той или иной степени остроты встаёт перед любым собственником. Нередко сложности заключаются даже в невозможности подвести соответствующие коммуникации, например, в отсутствии газораспределительных сетей в районе проживания. Но все ж, если рассматривать все в комплексе, то основные проблемы – это высокие тарифы на энергоносители, которые нередко ставят под вопрос рентабельность приусадебного хозяйства. К сожалению, даже падение цен на основные источники энергии на мировом рынке никои образом не отражаются на конечном потребителе – тарифы остаются на прежнем уровне и даже имеют тенденцию к росту.

Естественно, в такой ситуации все больше хозяев начинает задумываться о возможностях использования альтернативных источников энергии. В частности, много разговором сейчас идёт про биотопливо – высококалорийные энергоносители (жидкие, твердые или газообразные), которые получают путем переработки сырья, нередко в буквальном смысле слова «валяющегося под ногами». В частности, многих интересует вопрос, насколько реально изготовить такое биотопливо своими руками, в условиях небольшого частного хозяйства.

Мнений по этому поводу немало, вплоть до таких, что наладить подобное мини-производство – буквально «пара пустяков». Можно ли верить столь оптимистическим заверениям? Скорее всего, нет – любое биотопливо потребует и специального, часто – весьма дорогостоящего оборудования, и необходимых знаний, и навыков, и постоянного источника сырья. Давайте разбираться подробнее…

Практически все добываемые на планете энергоносители являются продуктом м ноголетней естественной переработки органики. Сложные биохимические процессы, происходившие в наслоениях отживших растений и в останках животных, под влиянием внешних факторов (температуры, давления) с течением времени приводили к образованию залежей угля, нефтеносных пластов, к скоплению горючих газов в толще грунтов. Именно эти природные ископаемые и являются по сей день основными энергоносителями, используемыми человеком.

Проблема в том, что все эти ресурсы — небезграничные, и их количество год от года уменьшается. Восстановления их практически не происходит (на это требуются многие миллионы лет). Все они, в подавляющем большинстве, залегают на больших глубинах, часто в труднодоступных местах (в арктических областях или на морских шельфах), их добыча требует применения сложных технологий, а плюс к этому немалую сложность представляют еще и вопросы транспортировки.

Одним словом, подобные проблемы, очевидно, будут лишь нарастать со временем, и человечеству ничего не остается , как рассматривать возможности альтернативных источников энергии. В качестве одного из наиболее перспективных направлений в настоящее время рассматривают биоэнергетику.

В самом деле, законы биохимии не меняются, органика – возобновляемый вид сырья, так почему бы искусственно, в короткие сроки, не провести те самые процессы получения энергоносителей? Мало того, в качестве сырья можно использовать ведь не только специально выращиваемые культуры, но и разнообразные биологические и технологические отходы, попутно решая вопрос их утилизации.

В таблице ниже схематично представлены основные направления в производстве и попутном использовании биологического топлива. Надо сказать, что подобные подходы могут применяться как в больших масштабах, так и в достаточно изолированных, автономных системах, например, средних или малых сельскохозяйственных комплексах.

Исходное сырье для переработки Технологические линии Получаемый продукт Продукт вторичного использования или переработки
Сельскохозяйственные животноводческие отходы, остаточые продукты кормового производства Установки по получению биогаза Биогаз (биометан) Обеспечение животноводческих комплексов "дармовой" электроэнергией
Обеспечение автономного обогрева
Экологически чистые органические удобрения
Технические культуры с высоким содержданием масла (подсолнечник, рапс, соя, кукуруза и т.п.) Перерабатываюшие линии Биоэтанол (спирт)
Растительное техническое масло Биодизель
Отходы сельскохозяйственного производства (растениеводство и пищевое производство) Перегонные и пиролизные установки Электроэнергия
Тепловая энергия
Жидкое топливо (спирты)
Отходы деревоперерабатываюшей промышленности Пиролизные установки Газообразное топливо (пиролизные газы) Электроэнергия
Тепловая энергия
Грануляционные установки Топливные брикеты (пеллеты)

Некоторые страны с развитой агротехнической инфраструктурой возводят производство биотопливо в ранг г лобальных национальных программ. Яркий пример – Бразилия, где внедрение технологий производства альтернативных видов топлива идет «семимильными шагами», и вполне вероятно, что это страна вскорости сможет претендовать на звание одного из крупнейших поставщиков подобных энергоносителей.

Однако, вернемся в «родные края». В наших условиях тоже вполне возможно производить практически любые виды биологического топлива, используя при этом или специально выращиваемое для этих целей сырье , или же применяя технологии переработки отходов сельскохозяйственного, пищевого производства, лесозаготовок или деревообрабатывающей промышленности. В частности, можно рассмотреть процесс создания жидкого биотоплива (биодизель ) и твердого (топливные пеллеты ).

Производство биодизеля

Достоинства биодизеля и основы его производства

Можно ли дизельное топливо — солярку , продукт, полученные путем ректификации, то есть прямой перегонки нефти, получить из растительного сырья? Оказывается, вполне, так как по молекулярной структуре растительные и животные масла весьма схожи с классическим дизтопливом.

Это, по сути, те же «длинные» углеводородные молекулы, но только не в свободном линейном состоянии, а связанные в «триады» поперечным каркасом из жирных кислот – глицерина. Значит, чтобы из масла выделить именно энергетическую сгораемую составляющую, нужно очистить его от глицерина. В этом то и состоит технологический процесс получения биодизеля .

В итоге должна получиться желтая (с возможным оттеночным разнообразием) жидкость, не имеющая того специфического запаха, который свойственен привычной солярке. Тем не менее , это готовое топливо, которое можно применять как в чистом виде, так и в качестве присадки к «классическому» дизтопливу. Интересно, что обычные дизельные двигатели не нуждаются ни в какой доработке при переходе даже на чистый биодизель .

(Чаще все же , из-за высокой температуры порога замерзания, биодизель применяют в смеси с обычной соляркой, и получаемое топливо обычно обозначается буквенным символом «В» с числом, которое показывает процентное соотношение биологической составляющей топлива от общего объема . Например, наиболее распространенное топливо «В20» — 20% биодизеля и 80 % солярки ).

Вместе с тем , такое биологическое топливо, не отставая по своей калорийности, даже во многом отличается от продукта нефтепереработки в лучшую сторону:

  • Такое топливо обладает выраженные смазывающим эффектом, что существенно продлевает жизнь деталям дизельного двигателя.
  • В таком топливе практически не содержится серы, которая и окисляет моторное масло, быстро выводя его из состояния пригодности, и «съедает» резиновые уплотнители, и просто чрезвычайно вредна для окружающей среды, куда попадает в результате выхлопа.
  • Точка воспламенения биодизеля – значительно выше, чем у обычной солярки (около 150 ° С ). А это означает, что биологическое топливо намного безопаснее и в хранении, и в транспортировке, и в использовании. Токсичность такого топлива — намного ниже, чем полученного от нефтеперегонки .
  • Одним из базовых показателей дизельного топлива является «цетановое число», показывающее способность горячего к воспламенению при компрессии. Чем оно выше, тем качественнее топливо, тем плавнее работает двигатель и меньше изнашиваются его детали. Если для обычного дизтоплива этот показатель начинается от 40 – 42, то для биодизеля цетановое число ниже 51 и не встречается (кстати, по европейским стандартам качества цетановое число в любом дизтопливе, применяемом на территории Евросоюза, должно быть доведено не ниже, чем до 51).

К недостаткам биодизеля можно отнести более высокую температуру начала кристаллизации (обычно такое топливо требует предварительного разогрева) и сравнительно небольшой срок возможного хранения готового продукта (обычно – до 3 месяцев).

В качестве сырья для производства в промышленных масштабах технического растительного масла, а затем – биодизеля , используются высокоурожайные маслосодержащие культуры – например, подсолнечник, соя, кукуруза.

Продукты для производства технических растительных масел — сырья для выработки биодизеля

Особое внимание у аграриев в последнее время стал завоевать рапс, из-за своей чрезвычайно высокой урожайности, неприхотливости, а кроме того , он из всех перечисленных культур в гораздо меньшей степени истощает почву.

Одна из наиболее перспективных технических культур — рапс

Однако, тенденции развития производства биодизеля таковы, что считается нецелесообразным занимать под него ценные посевные площади, которые могут быть больше востребованы в продовольственных целях. Наиболее перспективным направлением становятся фермы по выращиванию зеленых водорослей особых пород, которые чрезвычайно быстро растут и дают отменный по энергетическому содержанию билогический материал.

От зеленых водорослей — к полноценному топливу

При создании определенных условий для роста и жизнедеятельности водорослей в искусственных водоемах (биореакторах), они активно накапливают растительные жиры и сахара, которые затем в процессе переработки становятся исходным продуктом для получения горючего углеводорода. По большому счету , высоким по цене является только само по себе оборудование, а водорослям для активного роста нужны лишь вода, солнечный свет и углекислый газ.

Применяют для производства биодизеля и другие масла – пальмовое, кокосовое, а также животные жиры, как правило – в виде отходов перерабатывающей или пищевой промышленности.

В чем же заключается процесс «отрыва» углеводородной цепочки от ненужной глицериновой основы? Нужно просто заменить это плотное связующее другим, более химически активным и летучим. В качестве такого реагента оптимально подходит метиловый спирт (метанол). Он сам по себе является высокогорючим веществом и даже в ряде случаев может применяться в качестве совершенно отдельного вида топлива, поэтому никак не понизит свойств биодизеля .

Химический процесс вытеснения глицериновой составляющей (в научной литературе эта процедура называется перэтерификацией ) должен пойти и сам по себе, но он не является необратимым – вещество может переходить как в необходимое состояние, так и вновь в исходное. Для того чтобы избежать подобной нестабильности и чтобы ускорить процесс пр именяется катализатор. В его качестве чаще всего используют щелочи (NaOH или КОН). Для максимальной равномерности обменного процесса обрабатываемую смесь подвергают постоянному перемешиванию и подогреву до температуры порядка 50 градусов.

Обычно, в зависимости от объемов и качества исходных продуктов, процесс может идти от 1 до 10 часов. В итоге смесь должна дать выраженное расслоение. В верхней части реактора (сосуда, где происходил процесс) остаётся легкая фракция – собственно, сам биодизель . В нижней – выраженная плотная масса – глицериновая составляющая.

Теперь осталось отделить биодизель , подвернуть его очистке от излишков метанола и от остатков катализатора. Оставшуюся глицериновую фракцию также подвергают процессу очистки, так как сам по себе глицерин является весьма ценным продуктом с широкой сферой применения .

Оптимальной дозировкой компонентов считается такая: для переработки тонны растительного масла потребуется 111 кг метилового спирта и порядка 12 кг катализатора – гидроксида натрия или калия. При соблюдении технологии процесса на выходе должно получиться примероно 970 кг (или 1110 литров) готового очищенного биодизеля и 153 килограмма глицерина.

Можно, конечно, расписать сложную химическую формулу, но она вряд ли что скажетполезного читателю. Лучше привести наглядную блок-схему производственного процесса, чтобы стало понятно, насколько непросто качественно провести все операции.

Растительное масло или отжимается на месте, или поступает в готовом виде, или же применяются жировые отходы пищевого производства. После процесса очистки – поступает в переэтерификационные реакторы. Туда же, по своему каналу, поступает подготовленная смесь катализатора и реагента – метанола. Далее, следуют технологические циклы разделения фракций и их многоступенчатой очистки. В итоге биодизель и очищенный глицерин поступают как конечный продукт на склад, а извлеченные излишки метанола возвращаются для повторного использования.

А можно ли производить самостоятельно?

Казалось бы, все просто и понятно, но это в продуманной технологической линии. А вот можно ли изготовить биодизель самостоятельно?

1. Во-первых , нужно сразу четко осознать, что этот организация такого мини-производства будет лишь в том случае оправдана, если существует надежный и практически неиссякаемый источник сырья – растительных или животных жиров нужной степени очистки. Например, если есть возможность на пищевых предприятиях или в учреждениях общественного питания за очень невысокую сумму скупать остатки использованного масла. Производить масло самостоятельно выращивая для этого соответствующие культуры или приобретая семена для отжима – в масштабах личного хозяйства такая перспектива даже не должна рассматриваться, так как дело буде заведомо убыточным.

2. Следующий важный аспект – немалые сложности работы с химическими компонентами.

  • Щелочные составы — очень гигроскопичны, моментально впитывают влагу, то есть их х ранение становится немалой проблемой. Это еще и с учетом того, что гидроксиды натрия и калия, — чрезвычайно «агрессивные» вещества, и легко вступают в реакцию с большинством металлов. Стало быть, хранить их можно будет только в нержавеющей или стеклянной посуде, или полипропиленовой таре.
  • Немало проблем создаст и метанол. Прежде всего нужно постоянно помнить о его высочайшей токсичности – отравление таким спиртом нередко заканчивается летальным исходом. (Особое внимание, если в доме есть люди с пристрастием к спиртному – метанол по виду и запаху мало отличается от этилового, «винного» спирта). Все работы с метанолом должны проводиться с обязательной защитой органов дыхания, глаз, кожи, слизистых.

Конечно, реакцию можно провести и с более безопасным этиловым спиртом, но в итоге горючее получается более плотное и вязкое, его качество для заправки двигателей – существенно ниже.

  • Кустарным способом, «на глаз», очень непросто соблюсти правильную дозировку исходных компонентов и их определить их качество.

— Обычно исходят из того, что указанного выше соотношения метанола и масла для нормального протекания реакции может оказаться недостаточным – во многом это зависит от биохимического состава приобретенного сырья. Поэтому метанол всегда добавляется в избыточном количестве, примерно 1 : 4 в объемном соотношении к маслу. Точнее вычислить без лабораторных исследований, увы, невозможно.

— Ранее не зря упоминалось, что сырье должно быть определенной степени «чистоты» — если применять наобум любые полученные жировые или масляные отходы, можно не только не получить нужного биодизеля на выходе, но и серьезно «запороть» оборудование. Например, если в масле содержится слишком много воды , то она попросту разрушит катализатор, процесс выйдет из-под контроля, и в реакторе вместо ожидаемого биодизеля начнет образовываться мыло (так называемая сапонификация ) . Мало того, если при этом применялся NаОН , то, скорее всего, можно будет «поймать глоп » — мыло быстро густеет и заполняет собой весь объем реактора, полностью поглощая собой непрореагировавшее масло.

На предприятиях для удаления излишков воды применяют специальные осушающие агенты, которые затем, после обработки, выводятся с помощью фильтрации. Удалить воду в домашних условиях можно, конечно, обычным предварительным нагревом масла до 110 ÷ 120 градусов – вода должна при этом выпариться и улетучиться. Однако, нагревание масла нередко приводит и к другой «неприятности» – к повышению концентрации свободных жирных кислот. Об этом – следующий пункт .

— Второе уязвимое место исходного сырья – это концентрация свободных жирных кислот (FFА ) – есть определенные технологические ограничения на их содержание. Такой недостаток – повышенная концентрация FFA, обычно свойственен отходам пищевого производства, то есть маслам, подвергнутым уже тепловой обработке, так как сами по себе эти кислоты – продукт т ермического разложения масел. При реакции с катализатором FFA переходят в воду и мыло, об опасности которых уже упоминалось выше. На технологических линиях этот вопрос решается проведением анализов поступающего сырья и выработки соответствующей рецептуры по оптимальному процентному содержанию катализатора.

Итак, масло для переработки должно содержать минимальное количество воды и FFA. Но в домашних условиях провести необходимое лабораторное исследование – вряд ли представляется возможным. То есть, производитель весьма сильно рискует и качеством продукции, и сохранностью собственного оборудования.

3. Третий «блок проблем» – необходимое для процесса оборудование. Хотя в сети встречаются описания и фотографии самостоятельно изготовленных «линий» по производству биодизеля , назвать их удачными, удобными и т.п . – не получается.

Можно отдать дань уважения авторам за оригинальность, за использование самых неожиданных деталей и узлов, например, старых стиральных машин или холодильников, за интересные решения проблем разделения и очистки конечного продукта, но все же претендовать на какую-то «прорывную» модель установки, рекомендованную к самостоятельному изготовлению, нельзя.

Видео — Пример самодельной установки для получения биодизеля

Одним из самых сложных и трудоемких процессов является отделение глицериносодержащей фракции от биодизеля , а затем – проведение очистки горючего от остатков мыла, щелочной составляющей, излишков метанола. Кстати, метанол – очень недешевое сырье , и просто выпаривать его в атмосферу — крайне нерентабельно. Значит, при его повышенной летучести, необходимы специальные очистные герметичные камеры, позволяющие без потерь провести процесс перегонки.

Мыльную составляющую отделяют путем отстаивания, водной промывки с последующей фильтрацией и выпариванием излишков. Для удаления щелочей используют подкисленные составы (например, уксусной кислоты).

Некоторые домашние мастера предпочитают установку специальной аэрационной колонны, в которой биодизель проходит отстаивание и с помощью искусственно созданных компрессором воздушных пузырьков очищается от химических примесей. Подобный пример приведен в продолжении видеосюжета:

Видео — Как сделать биодизель

Одним словом, говорить о высокой (или хотя бы какой-нибудь) рентабельности подобного кустарного производства – вряд ли приходится. Производительность подобных установок – невысока, невозможно организовать непрерывный цикл, самодельная аппаратура требует практически постоянного контроля со стороны человека. Да и качество получаемого биодизеля проконтролировать сложно. То есть, для нужд личного хозяйства, для заправки собственной машины (на свой страх и риск) это применить можно, но не станет ли подобное топливо дороже обычной солярки?

А если рассматривать организацию производства биотоплива, как собственное дело, то в этом случае не обойтись без приобретения специальных технологических установок.

Если задаться целью, то будет не так сложно подобрать необходимый производственный мини-комплекс, оптимально подходящий к имеющейся в распоряжении площади. На интернет-площадках представлено немало подобных технологических установок, различающихся по по требляемой мощности, производительности, степени автоматизации, количеству необходимых для обслуживания операторов, и, конечно, по стоимости оборудования. Производство линий по выработке биодизеля освоили и отечественные, и европейские компании.

Видео: автоматизированная модульная линия по выпуску биодизеля

Твердое биотопливо — пеллеты

В последнее время очень много ходит различных слухов или даже своеобразных «легенд» о том, что одним из наиболее перспективных и высокорентабельных видов малого бизнеса может стать производство топливных пеллет – особого вида биологического топлива.Давайте внимательнее глянем на достоинства твердого гранулированного топлива и на процесс его получения.

Для чего и как производят топливные пеллеты

Лесозаготовки, деревообрабатывающие предприятия, сельскохозяйственные комплексы, некоторые другие производственные линии обязательно выдают, помимо основной продукции, очень большое количество древесных или иных растительных отходов, которые, казалось бы, уже не имеют никакой практической ценности. Еще не та дано они попросту сжигались, выбрасывая дым атмосферу, или даже бесхозяйственно разлагались огромными «терриконами». Но ведь в них заложен огромный энергетический потенциал! Если эти отходы привести в состояние, удобное для использования в виде топлива, то, наряду с решением проблемы утилизации, можно ещё и прибыль получить! Именно на этих принципах и базируется производство твердого биотоплива – пеллет .

По сути – это спрессованные гранулы цилиндрической формы, имеющие диаметр от 4 ÷ 5 и до 9 ÷ 10 мм, и длину примерно 15 ÷ 50 мм. Такая форма выпуска очень удобна – гранулы легко фасуются в мешки, их несложно транспортировать, они отлично подходят для автоматической подачи топлива в твёрдотопливные котлы, например, с помощью шнекового загрузчика.

Пеллеты прессуются и их отходов натуральной древесины, и из коры, веток, хвои, сухих листьев и других побочных продуктов лесозаготовок. Получают их из соломы, лузги, жмыха, а в некоторых случаях сырьем служит даже куриный помет. На производстве пеллет пускают торф – именно в такой форме у него достигается максимальная теплоотдача при сгорании.

Безусловно, разное сырье дает и различные характеристики получаемых пеллет – по их энергоотдаче, зольности (количеству остающегося несгораемого компонента), влажности, плотности, цене. Чем выше качество, тем меньше хлопот с отопительными приборами, тем выше КПД системы отопления.

Некоторые пеллеты можно использовать не только в виде топлива, но и как удобрение или состав для мульчирования почвы. Тем не менее основное их предназначение, безусловно – топливо для котлов, и здесь у них немало выраженных преимуществ перед другими видами твердого топлива. Так, например, это абсолютно чистый вид топлива с точки зрения экологии. В процессе производства пеллет не используется никаких химических добавок или формовочных смесей.

По своей удельной калорийности (в объемном отношении) пеллеты оставляют позади все виды дров и угля. Хранение же такого топлива не требует больших площадей или создания каких-либо особых условий. В спрессованной древесине, в отличие от опилок, никогда не начинается процессов гниения или прения, так что риска самовоспламенения такого биотоплива нет.

Теперь – к вопросу производства пеллет . По сути, весь цикл пр осто и понятно изображен на схеме (показано сельскохозяйственное сырье , но в равной мере это относится и к любым древесным отходам):

«Краткий курс» по производству пеллет

В первую очередь отходы проходят стадию дробления (обычно до размеров щепы до 50 мм длиной и 2 ÷ 3 мм толщиной). Затем следует процедура сушки – необходимо, чтобы остаточная влажность не превышала 12%. Если есть необходимость, то щепу дробят в еще более мелкую фракцию, доводя ее состояние почти до уровня древесной муки. Оптимальным считается, если размер частиц, поступающих на линию прессования пеллет , будет в пределах 4 мм.

Прежде чем сырье попадет в грануляторы, его слегка пропаривают или кратковременно погружают в воду. И, наконец, на линии прессовки пеллет эта «древесная мука» продавливается через калибровочные отверстия специальной матрицы, имеющие конусную форму. Такая конфигурация каналов способствует максимальному сжатию измельченной древесины с, естественно, резким ее нагревом. При этом имеющееся в любой целлюлозосодержащей структуре вещество лигнин надежно «склеивает» все мельчайшие частицы, создавая очень плотную и прочную гранулу.

На выходе из матрицы полученные «колбаски» срезаются специальным ножом, что дает цилиндрические гранулы нудной длины. Они поступают в бункер, а оттуда – в приемник готовых пеллет . По сути, осталось только охладить готовые гранулы и расфасовать по мешкам.

Матрицы могут быть плоскими или цилиндрическими или плоскими. Первые — более производительные, используются в основном в мощных промышленных установках. На небольших грануляторах, которые чаще используются в индивидуальном хозяйстве, обычно устанавливаются плоские.

Видео: небольшое производство по переработке древесных отходов в пеллеты

А как быть «частному собственнику»?

Итак, все, казалось бы, просто . Но эта «простота» — для налаженного производства, а стоит ли затевать такой процесс с амому?

1. Прежде всего, нужно очень внимательно «осмотреться» с точки зрения источника сырья для частного производства.

  • Если поблизости есть какой-либо деревообрабатывающий комбинат (крупная мастерская), и там по «смешным» ценам или даже бесплатно, в порядке самовывоза, можно на постоянной основе получать готовые опилки – то стоит попробовать. Скорее всего, все первоначальные затраты будут вскорости оправданы – появится возможность не только полностью обеспечить себя гранулированным биотопливом, но и реализовать излишки.

Если удалось найти такого поставщика — то дело пойдет!

Вполне понятно, что весьма выгодным будет наличие пеллетной линии, если хозяин сам занимается вопросами деревообработки, и опилки в хозяйстве, как говорится, «не переводятся».

  • Хуже, если доступны только крупные отходы древесины – в этом случае придётся продумывать вопрос ее дробления, а это уже лишние расходы и на оборудование, и на электроэнергию.
  • Если же расчет строится из волюнтаристских предположениях – «что найду, то и переработаю», то, скорее всего, ничего путного не получится. Оборудование для гранулирования стоит недешево , и вряд ли когда-нибудь себя при таком подходе оправдает.

При оценке возможностей получения сырья нужно оценивать и породу древесины. Вряд ли стоит связываться с тополем или ивой – мало того, что и сама древесина низкокалорийная, она еще и плохо спекается в гранулы из-за низкого содержания лигнина. Не слишком удачным выбором станет и липа. А вот опилки от хвойных пород по причине повышенного содержания смол подходят все без исключения.

2. Следующий важный вопрос – это проблема оборудования.

Собственно, особых проблем-то с этим и нет – в продаже представлено немало установок различной мощности и производительности, отечественной, европейской или китайской сборки. Назвать их дешевыми – наверное, нельзя. Какие из них лучше или хуже – тоже судить сложно, лучше на эту тему покопаться в форумах интернета.

Там же, на форумах, можно отыскать предложения мастеров, которые занимаются изготовлением грануляторов на заказ. У них есть наработанные схемы, собственные чертежи, опыт сборки и наладки установок. Возможно, что и по цене такой аппарат окажется намного привлекательнее, нежели заводской.

Видео: модель гранулятора с неподвижной плоской матрицей на 4 кВт

А вот насчет самостоятельного изготовления – вопрос весьма спорный. Прежде всего, готовых чертежей таких изделий добыть практически невозможно – разве, что скопировать с собранного аппарата. Мастера, которые освоили производства подобных установок, вряд ли будут делиться всеми нюансами конструкции и сборки.

Вторая сложность – подвижные и стационарные детали в грануляционной камере испытывают огромные нагрузки, и без соответствующих знаний сопромата и прикладной механики правильно рассчитать их — практически невозможно. Делать «на глаз» — не получится.

Главные детали гранулятора — матрица и дробящие ролики

Основные детали – матрицу и дробящие ролики, можно приобрести в готовом виде. Но исполнить сам корпус, смонтировать его на станине, установить электропривод, продумать систему передач с нужным передаточным числом, точно подогнать все детали и узлы – здесь нужны незаурядные способности слесаря, механика, фрезеровщика, токаря…

Конечно, если есть полная уверенность в своих силах, то можно попробовать – в интернете встречаются примеры, в которых домашние мастера хвастают своими удачами. Мало того, некоторым даже удается уйти от обычных схем и изменить конструкцию, сделав ее проще, но без потери возможностей установки.

Возможно, предлагаемое ниже видео для кого-нибудь и станет отправной точкой в разработке и изготовлении собственного пеллетного гранулятора:

Видео: как устроен компактный аппарат для гранулирования пеллет

В завершение можно отметить следующее.

В масштабах одной публикации просто невозможно даже вкратце пройтись по всем современным методам изготовления биотоплива. Так, заслуживают отдельных статей вопросы выработки и использования биогаза из отходов животноводства, производства биоэтанола из растительного сырья. Если у читателя есть интересная информация по этим вопросам – мы будет рады опубликовать ее на на шем портале. Во всяком случае, эти темы тоже не останутся без рассмотрения.

Следите за обновлениями!

БИОТО́ПЛИВО (биологическое топливо), топливо из растительного или животного сырья, из продуктов жизнедеятельности организмов или органических промышленных отходов, получаемое из биомассы термохимическим или биологическим способом. Биотопливо классифицируют по агрегатному состоянию и поколениям. По агрегатному состоянию различают жидкую биомассу (обычно применяют для двигателей внутреннего сгорания); твёрдое биотопливо (способно гореть при условии, что топливо состоит из горючего, например дерева, и окислителя, которым часто служит кислород воздуха); газообразное – биогаз (газ, получаемый брожением биомассы), биоводород, метан. Биотопливо, как правило, делится на первичное и вторичное. Первичное биотопливо используется в необработанном виде, в первую очередь для отопления, приготовления пищи и электричества; в основном это топливная древесина, каменный уголь. Вторичное биотопливо можно условно разделить на три поколения (на основе различных параметров, типа технологии обработки, исходного сырья и др.); производится путём переработки биомассы и используется на транспортных средствах, в различных промышленных процессах и др.

Биотопливо первого поколения производится из традиционных сельскохозяйственных культур с высоким содержанием жиров, крахмала, сахаров посредством применения технологий, близких к естественным биологическим и термохимическим процессам (например, брожение). Однако это сырьё используется в пище людей и животных. Т. о., помимо затратного землепользования (необходимость использования качественных пахотных земель) с истощением почв и высокими потребностями в их обработке, изъятие этого сырья с рынка прямо повлияет на цену пищевых продуктов (основной недостаток производства биотоплива первого поколения). Условная эффективность производства биотоплива из биомассы первого поколения составляет примерно 35–45%.

Биотопливо второго поколения получают из непищевого сырья (отработанные жиры и растительные масла, биомасса деревьев и растений) разными методами. Такое сырьё содержит целлюлозу и лигнин. Технологически производство биотоплива второго поколения представляет собой процесс получения топлива посредством переработки целлюлозы и лигнина, содержащихся в древесной или волокнистой биомассе, что менее затратно, чем получение биотоплива у культур первого поколения. Его можно прямо сжигать (как это традиционно делали с дровами), газифицировать (получая горючие газы), осуществлять пиролиз , который позволяет превратить биомассу в жидкость. Из жидкости можно сделать автомобильное топливо или топливо для электростанций. Сырьём для подобного производства может быть любая биомасса, включая отходы деревообрабатывающего производства и остатки пищи. Основной источник сырья второго поколения – растения: водоросли, простые живые организмы, приспособленные к росту и размножению в загрязнённой или солёной воде (содержат до двухсот раз больше масла, чем источники первого поколения, такие как соевые бобы); рыжик (растение), растёт в ротации с пшеницей и другими зерновыми культурами; ятрофа (Jatropha curcas ), растёт в засушливых почвах, содержит масла от 27 до 40% в зависимости от вида. Условная эффективность производства биотоплива из биомассы второго поколения составляет примерно 50%. Производство биотоплива второго поколения в настоящий момент является очень капиталоёмким процессом, т. к. соответствующие технологии весьма дороги.

Биотопливо третьего поколения получают из водорослей (не требуют земельных ресурсов, имеют большую концентрацию биомассы и высокую скорость воспроизводства). Перспективность этого направления развития связана со спецификой состава водорослей (в штамме водорослей содержание жиров составляет от 75 до 85% сухого веса). Водоросли рассматривают как наиболее перспективное сырьё для производства топлива из возобновляемых источников. По оценкам специалистов, из водорослей, растущих на прудах суммарной площадью 200 тысяч га, можно производить топливо, достаточное для годового потребления 5% автомобилей США (для США это 0,02% земельного фонда, для России – чуть более 0,01%). Установлено, что с 1 акра (4047 м 2) водорослей можно произвести в 30 раз больше энергии, чем с акра наземных растений, таких как, например, соя.

Жидкое (моторное) биотопливо

Вещество, получаемое в ходе переработки растительного сырья (кукурузы, рапса, сахарной свёклы, сахарного тростника и др.), отходов деревообработки средствами технологий, в основе которых лежит использование естественных биологических процессов (например, брожения). Основное применение жидкого биотоплива – двигатели. Жидкое биотопливо подразделяется на биоэтанол, биометанол, биобутанол, диметиловый эфир, биодизель.

Биоэтанол – обычный этанол, получаемый в процессе переработки растительного сырья для использования в качестве биотоплива; биотопливный заменитель бензина. Этанол в Бразилии производится преимущественно из сахарного тростника, в США – из кукурузы. Производство этанола из тростника на сегодняшний день экономически более выгодно, чем из кукурузы. Сырьём для производства биоэтанола также могут быть различные сельскохозяйственные культуры с большим содержанием крахмала или сахара: маниок, картофель, сахарная свёкла, батат, сорго, ячмень и т.д. Существует 2 основных способа получения биоэтанола – микробиологический (спиртовое брожение) и синтетический (гидратация этилена). Следствием брожения является раствор, содержащий не более 15% биоэтанола, поскольку в более концентрированных растворах дрожжи обычно гибнут. Полученный таким образом биоэтанол нуждается в очистке и концентрировании, обычно путём дистилляции. В промышленных масштабах этиловый спирт получают из сырья, содержащего целлюлозу (различные отходы сельского и лесного хозяйства – пшеничная солома, рисовая солома, древесные опилки и т. п.), которую предварительно подвергают гидролизу (см. Гидролиз растительных материалов ). Смесь, образовавшаяся при этом, подвергают спиртовому брожению. С учётом того, что ежегодно на нашей планете образуется ок. 200 млрд. т растительной целлюлозосодержащей биомассы, биосинтез целлюлозы – самый крупномасштабный синтез в настоящем и будущем. Глобальное производство этанола на 2009 составило 73,9 млрд. литров, в 2010 – 85,9 млрд. литров (на 16,2% больше, чем в 2009). В 2014 производство этанола (91,4 млрд. литров) заместило потребность, эквивалентную 430 млн. баррелей нефти. Мировым лидером в области производства биоэтанола (2014) являются США – 53,2 млрд. литров (14 млрд. галлонов).

Биометанол – обычный метанол, первый представитель гомологического ряда одноатомных спиртов, который используется в качестве биотоплива. Промышленное культивирование и биотехнологическая конверсия морского фитопланктона рассматривается как одно из наиболее перспективных направлений в области получения биотоплива. Производство биомассы для получения биометанола осуществляется путём обработки фитопланктона в специально созданных водоёмах на морском побережье. Вторичные процессы представляют собой метановое брожение биомассы и последующее гидроксилирование метана с получением метанола. Основными доводами в пользу использования микроскопических водорослей являются: высокая продуктивность фитопланктона (до 100 т/га в год); в производстве не используются плодородные почвы, пресная вода; процесс не конкурирует с сельскохозяйственным производством и др. Метанол может использоваться как в классических двигателях внутреннего сгорания, так и в специальных топливных элементах для получения электричества. Достоинства биометанола: низкий объём выбросов углекислого газа; возможность организовать переработку (рециклинг) отходов животноводства и сельского хозяйства. Недостатки: низкий энергетический кпд (максимум 68%); бесцветное пламя, что может привести к аварийным ситуациям; срок окупаемости проекта (до 20 лет); метанол травит алюминий (проблемным становится использование алюминиевых карбюраторов и инжекторных систем подачи топлива в двигателях внутреннего сгорания ). На долю транспортных средств приходится 20% совокупного потребления метилового спирта (как в чистом виде, так и в виде его производных). Помимо применения метанола в качестве альтернативы бензина, существует технология применения метанола для создания на его базе угольной суспензии, которая в США имеет коммерческое наименование «метакол» (methacoal). Такое топливо предлагается как альтернатива мазута, широко используемого для отопления зданий (топочный мазут). Такая суспензия, в отличие от водоуглеродного топлива, не требует специальных котлов и имеет более высокую энергоёмкость.

Биобутанол(бутиловый спирт, бутанол) – бесцветная жидкость, получаемая из растительного сырья, с характерным запахом сивушного масла. Энергия бутанола близка к энергии бензина. Бутанол может использоваться в топливе и также как сырьё для производства водорода. Сырьём для производства биобутанола могут быть сахарный тростник, маниока, свёкла, а в будущем и целлюлоза. В 1950-х гг. бутанол производили из нефтепродуктов. Бутанол, произведённый из биомассы, принято называть биобутанолом, хотя он имеет абсолютно те же характеристики, что и бутанол, полученный из нефти (химического сырья). Бутанол применяют как растворитель в лакокрасочной промышленности, в производстве смол и пластификаторов, в синтезе многих органических соединений, в качестве компонента к традиционным топливам или как самостоятельное топливо для транспортных средств. Но прежде всего его используют в качестве промышленного растворителя.

Диметиловый эфир – топливо, производимое из природного газа, угля, отходов целлюлозно-бумажного производства; экологически чистый продукт. Диметиловый эфир применяют очень широко, так как его использование не требует каких-то специальных очисток, но необходима переделка систем питания и зажигания двигателя внутреннего сгорания (например, возможно применение этого биотоплива на автомобилях с LPG-двигателями). Автомобили с двигателями, работающими на диметиловом эфире, разрабатывают КАМАЗ, « Volvo » , « Nissan » и китайская компания « SAIC Motor » .

Биодизель – биотопливо на основе растительных или животных жиров (масел), а также продуктов их этерификации (моноалкиловые эфиры жирных кислот). Сырьём для производства биодизеля служат жирные, реже – эфирные масла различных растений или водорослей: в Европе – рапс; США – соя; Канаде – канола (разновидность рапса); в Индонезии, на Филиппинах – пальмовое и кокосовое масло; в Индии – ятрофа; Африке – соя, ятрофа; Бразилии – касторовое масло. Также применяются отработанное растительное масло, животные жиры, рыбий жир и т. п.

В России (Северо-Кавказский научно-исследовательский институт механизации и электрификации сельского хозяйства, СКНИИМЭСХ) разработана технология и модульная установка «БИОДОН-1М» для производства жидкого биотоплива из растительных масел непищевого назначения с высоким значением кислотного числа (8–13 мг КОН/г). Оборудование, необходимое для выполнения технологического процесса получения биодизеля из растительных масел, размещается в стандартном 20-футовом контейнере, оборудованном приточно-вытяжной вентиляцией. Благодаря этому, установка легко транспортируется. Для монтажа и запуска установки в работу необходимы ровная площадка, подвод воды и трёхфазного тока напряжением 380 В. Установка состоит из реактора, промывочной ёмкости, ёмкости для приготовления катализатора, узла смешивания, конденсатора для охлаждения паров метанола, системы трубопроводов, шкафа управления. Реактор служит для получения из растительного масла метилового эфира жирных кислот (биодизеля) и технического глицерина методом этерификации. Затем биодизель-сырец перекачивают в промывочную ёмкость, где происходит его отмывка от омылённого продукта. Далее готовый биодизель поступает в накопительную ёмкость.

Установка позволяет перерабатывать растительные масла с последующим использованием в качестве самостоятельного топлива, а также в качестве добавки к дизельному топливу нефтяного происхождения автономно, непосредственно в условиях различных сельхозпредприятий. Для получения жидкого биотоплива в качестве исходного компонента могут быть использованы рапсовое, подсолнечное, льняное, горчичное и др. растительные масла с кислотным числом для 13 мг КОН/г. При максимальном значении кислотного числа 13 мг КОН/г растительного масла получение биотоплива, соответствующего ГОСТ Р 53605-2009, на установке «БИОДОН-1М» с применением непрерывного способа дозирования компонентов обеспечивается с предварительным подогревом масла до 50 о C. Для получения биотоплива из растительных масел с кислотным числом до 8,6 мг КОН/г предварительный нагрев растительных масел не требуется. Также разработана технология углекислой промывки для нейтрализации остатков катализатора КОН при производстве жидкого биотоплива, которая исключает возможность попадания воды в готовое биотопливо, что обеспечивает его гарантированно высокое качество для работы с двигателями внутреннего сгорания. Установка не имеет отечественных аналогов и существенно отличается от малогабаритных зарубежных установок (компоновкой, новыми техническими решениями, как-то: использованием различных видов исходного сырья, применением гидродинамического смесителя и вакуумного дозатора непрерывного действия, углекислотной промывки готового продукта и др.).

Наиболее перспективным источником сырья для производства биодизеля являются водоросли. По оценкам экспертов, с одного акра (4047 м 2 ~ 0,4 га) земли можно получить 255 литров соевого масла или 2400 литров пальмового масла. С такой же площади водной поверхности можно производить до 3570 баррелей бионефти (1 баррель = 159 литров). Основные преимущества: биодизель характеризуется хорошими смазочными свойствами, что продлевает срок жизни двигателя (это вызвано его химическим составом и содержанием в нём кислорода); при работе двигателя на биодизеле одновременно производится смазка его подвижных частей, в результате которой, как показывают испытания, достигается увеличение срока службы самого двигателя и топливного насоса в среднем на 60% (например, грузовик из Германии попал в Книгу рекордов Гиннесса, проехав более 1,25 млн. километров на биодизельном топливе со своим оригинальным двигателем); нет необходимости модернизировать двигатель; биодизель при попадании в почву не причиняет вреда растениям и животным, подвергается практически полному биологическому распаду (в почве или в воде микроорганизмы за 28 дней перерабатывают 99% биодизеля, что позволяет говорить о минимизации загрязнения окружающей среды); в сравнении с обычным дизельным топливом почти не содержит серы; температура вспышки для биодизеля превышает 100 °С, что позволяет считать биотопливо относительно безопасным веществом; производство биодизеля способствует вводу в оборот низкокачественных неиспользуемых сельскохозяйственных земель; полученный в ходе производства биодизеля жмых можно использовать в качестве компонентов корма для скота, что позволяет наиболее полно использовать сырьевую биомассу. Основной недостаток: в холодное время года необходимо подогревать топливо, идущее из топливного бака в топливный насос, или применять смеси 20% биодизеля и 80% минерального дизельного топлива; хранить технику, заправленную биодизелем более 3 месяцев, не рекомендуется – он склонен к окислению и чувствителен к воде, конденсирующейся на стенках топливных баков. Кроме того, недостатком биодизеля для климатических условий России является то, что он по своим физико-химическим свойствам соответствует летнему дизельному топливу.

Твёрдое биотопливо

Самый распространённый представитель вида – дрова. В настоящее время для производства дров или биомассы используются энергетические леса – быстрорастущих пород древесины, кустарников и трав (ива, тополь, эвкалипт, акация, сахарный тростник, кукуруза и др.). Посадку производят квадратно-гнездовым способом или в шахматном порядке. В междурядьях из деревьев часто высаживают сельскохозяйственные культуры (так называемые комбинированные посадки). Период ротации энергетического леса (от срезания до срезания) составляет 4–6 лет. В ряде стран, таких как Италия, Германия, Аргентина, Польша и др., широко практикуется создание специальных плантаций быстрорастущих пород древесины тополя и ивы. В Северной Индии посадки быстрорастущего тополя и эвкалипта занимают примерно от 50 до 60 тыс. га. Ежегодно на таких плантациях заготавливается ок. 3,7 млн. тонн древесины. Щепа и другие виды древесных отходов, топливные гранулы и брикеты и прочие виды биомассы могут представлять собой высокоэффективное, экологически чистое, возобновляемое и экономичное топливо.

Топливные гранулы – прессованные изделия из древесных отходов (опилок, щепы, коры, тонкомерной и некондиционной древесины, порубочные остатки при лесозаготовках), соломы, отходов сельского хозяйства (лузги подсолнечника, ореховой скорлупы, навоза, куриного помёта) и другой биомассы. Древесные топливные гранулы называются пеллеты, они имеют форму цилиндрических или сферических гранул диаметром 8–23 мм и длиной 10–30 мм. В настоящее время в России производство топливных гранул и брикетов экономически выгодно только при больших объёмах.

Технологический процесс производства грану л. Сырьё (опилки, кора и т. д.) поступает в дробилку, где измельчается до состояния муки. Полученная масса поступает в сушилку, из неё – в пресс-гранулятор, где древесную муку сжимают в гранулы. Сжатие во время прессовки повышает температуру материала, лигнин, содержащийся в древесине, размягчается и склеивает частицы в плотные цилиндрики. На производство одной тонны гранул уходит 4–5 м 3 древесных отходов. Готовые гранулы охлаждают, пакуют в стандартную упаковку 12–40 кг или доставляют приобретателю россыпью. Гранулы менее подвержены самовоспламенению, так как не содержат пыли и спор, которые также могут вызывать аллергическую реакцию у людей. Отличаются от обычной древесины высокой сухостью (8–12% влаги против 30–50% в дровах) и большей (примерно в полтора раза) плотностью. Эти качества обеспечивают высокую теплотворную способность по сравнению со щепой или дровами (при сгорании тонны гранул выделяется приблизительно 5 тыс. кВт·ч тепла, что в полтора раза больше, чем у обычных дров). Топливные гранулы – экологически чистое топливо с содержанием золы не более 3%.

Топливные брикеты – высушенные и брикетированные энергоносители биологического происхождения (различных отходов деревообработки, торфа, отходов сельского хозяйства и др.), экологически чистый материал, с высокой теплоотдачей. Используется как топливо, как заготовка при выработке древесного угля или кокса. В основе технологии производства топливных брикетов лежит процесс прессования шнеком отходов (шелухи подсолнечника, гречихи и т. п.) и мелко измельчённых отходов древесины (опилок) под высоким давлением при нагревании от 250 до 350°C. Получаемые топливные брикеты не включают в себя никаких связующих веществ, кроме одного натурального – лигнина, содержащегося в клетках растительных отходов. Температура, присутствующая при прессовании, способствует оплавлению поверхности брикетов, которая благодаря этому становится более прочной, что немаловажно для транспортировки брикета. Различают 3 основных типа брикетов: прямоугольные, 4- или 6-гранные брикеты (за счёт термической обработки имеют характерный чёрный или тёмно-коричневый цвет наружной поверхности). Брикеты отличаются стойкостью к механическим повреждениям, высокой влагостойкостью и калорийностью, длительным временем горения.

Биоуголь обычно получают в процессе нагревания древесины, стеблей растений или других органических материалов без доступа кислорода. Наиболее распространённый способ получения биоугля – пиролиз. В последние годы возрастает интерес к применению технологии отжига биомассы (торрефакция), которая позволяет получать биотопливные гранулы с высоким объёмным теплосодержанием. В США такая технология была применена впервые в 2008 компанией «Integro Earth Fuels».

Наво з – вид твёрдого биотоплива животного производства. Благодаря сбраживанию определённых бактерий с навозом и сушке, получают товар горения, который прессуется в блоки и используется как топливо для тепловых электростанций. Высушенный навоз – кизяк (название происходит от тюркского, казахского тезек) использовался и иногда используется теперь в качестве топлива (например, для сжигания в печи у тюркских народов для обогрева или приготовления пищи), а также для построения жилищ.

Газообразное топливо

Сырьём для производства биогаза могут служить навоз, птичий помёт, зерновая и мелассная послеспиртовая барда, пивная дробина, свекольный жом, фекальные осадки, отходы рыбного и забойного цеха (кровь, жир, кишки, каныга), трава, бытовые отходы, отходы молокозаводов (солёная и сладкая молочная сыворотка), отходы производства биодизеля (технический глицерин от производства биодизеля из рапса), отходы от производства соков (жом фруктовый, ягодный, овощной, виноградная выжимка, водоросли), отходы производства крахмала и патоки (мезга и сироп), отходы переработки картофеля, производства чипсов (очистки, шкурки, гнилые клубни, кофейная пульпа). Кроме этого, биогаз можно производить из специально выращенных энергетических культур, например из силосной кукурузы или сильфия, а также из водорослей.

Свалочный газ – одна из разновидностей биогаза. Получается на свалках из муниципальных бытовых отходов, что позволяет эффективно решить проблему замусоренности крупных городов и существенно улучшить экологическую обстановку.

Одной из главных задач биогазовых станций (помимо получения электрической и тепловой энергии) является переработка отходов, получение удобрений, улучшение экологической обстановки окружающей среды. Технология производства биогаза (метанового брожения) осуществляется в аппарате (метантенк), включающем загрузчик сырья, реактор, мешалки, газгольдер, систему смешивания воды, систему отопления, газовую систему, насосную станцию, сепаратор, приборы контроля. Биомасса (отходы или зелёная масса) периодически подаётся с помощью насосной станции или загрузчика в реактор. Реактор представляет собой подогреваемый и утеплённый резервуар (железобетон или сталь с покрытием), оборудованный мешалками. В реакторе живут полезные бактерии, питающиеся биомассой. Для поддержания жизни бактерий требуется подача корма, подогрев до 35–38° С и периодическое перемешивание. Образующийся биогаз скапливается в хранилище (газгольдере), затем проходит систему очистки и подаётся к потребителям (котёл или электрогенератор). Реактор работает без доступа воздуха, герметичен и неопасен. Для сбраживания некоторых видов сырья в чистом виде требуется особая технология, например переработка по одностадийной технологии без химических добавок, но при коферментации (смешивании) с другими видами сырья, например с навозом или силосом.

Состав и качество биогаза: 50–87% метана, 13–50% CO 2 , незначительные примеси H 2 и H 2 S. После очистки биогаза от СО 2 получается биометан – полный аналог природного газ а, отличие только в происхождении. Выход биогаза зависит от содержания сухого вещества и вида используемого сырья. Из тонны навоза крупного рогатого скота получается 50–65 м³ биогаза с содержанием метана 60%, из различных видов растений 150–500 м 3 биогаза с содержанием метана до 70%. Максимальное количество биогаза можно получить из жира – 1300 м³ с содержанием метана до 87%. Основная задача биогазовых станций – переработка отходов, получение удобрений, улучшение экологической обстановки окружающей среды и только потом получение электрической и тепловой энергии.

Биогаз используют в качестве топлива для производства электричества, тепла или пара или в качестве автомобильного топлива (например, фирмы « Volvo » и « Scania » производят автобусы с двигателями, работающими на биогазе). Биогазовые установки могут устанавливаться как очистные сооружения на фермах, птицефабриках, спиртовых заводах, сахарных заводах, мясокомбинатах. Биогазовая установка может заменить ветеринарно-санитарный завод, т. е. падаль может утилизироваться в биогаз вместо производства мясокостной муки. Среди промышленно развитых стран ведущее место в производстве и использовании биогаза по относительным показателям принадлежит Дании (до 18% в её общем энергобалансе). По абсолютным показателям по количеству средних и крупных установок ведущее место занимает Германия (8000 тыс. штук). В Западной Европе не менее половины всех птицеферм отапливаются биогазом. В Индии, Вьетнаме, Непале и других странах строят малые (односемейные) биогазовые установки. Получаемый в них газ используется для приготовления пищи. Китай на сегодняшний день является мировым лидером по внедрению технологии производства биогаза. Суммарный выпуск биогаза в стране составляет 14 млрд. м 3 /год. По мнению экспертов, при сохранении текущих темпов роста биогазовой индустрии (а это практически ежегодное удвоение рынка) Китай выйдет в мировые лидеры по производству биогаза уже к 2020 году.

Биоводород – водород, полученный из биомассы термохимическим, биохимическим или другим способом. При термохимическом методе биомассу нагревают без доступа кислорода до температуры 500–800 о C (для отходов древесины), что намного ниже температуры процесса газификации угля. В результате процесса выделяется H 2 , CO и CH 4 . Биоводород можно получать термомеханическим способом из отходов древесины, однако себестоимость данного метода пока слишком высока. В биохимическом процессе водород вырабатывают различные бактерии, например Rhodobacter sphaeroides, Enterobacter cloacae. Возможно применение различных ферментов или энзимов [от лат. fermentum – закваска; обычно белковые молекулы или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах] для ускорения производства водорода из полисахаридов (крахмал, целлюлоза), содержащихся в биомассе. Процесс проходит при температуре 30° C и нормальном давлении. Водород может производить группа зелёных водорослей, например Chlamydomonas reinhardtii. Водоросли могут производить водород из морской воды или канализационных стоков.

Разрабатывается проект получения биоводорода микробиологическим путём с использованием принципов, аналогичных тем, которые используются для получения биогаза. Методом бутилового брожения сахарозы или крахмала с 1 т мелассы можно получить до 140 м 3 водорода, 1 т стеблей сладкого сорго – 50 м 3 , 1 т картофеля – 42 м 3 .

Применение водорода на транспорте и в энергетике в настоящее время обусловлено отсутствием развитой инфраструктуры, ограничиваясь созданием концептуальных моделей водородных автомобилей и техники, работающей на топливных водородных элементах. Усложняют возможность использования водорода в качестве топлива и проблемы безопасности: водород может создавать с воздухом взрывоопасную смесь – гремучий газ; сжиженный водород обладает исключительными проникающими свойствами, требуя применения особых материалов.

Синтезгаз (сигаз) – смесь газов, главными компонентами которой являются СО и Н 2 ; используется для синтеза разных химических соединений. В настоящее время синтез-газ производят конверсией природного газа либо нефтепродуктов (от лёгкого бензина – нафты до нефтяных остатков) и лишь в небольших масштабах химической переработкой древесины, а также газификацией углей. В зависимости от применяемого сырья и вида конверсии (водяным паром или нестехиометрическим количеством О 2) соотношение компонентов в газовой смеси изменяется в широких пределах. Синтез-газ получают также наряду с целевым продуктом ацетиленом при окислительном пиролизе природного газа.

Историческая справка

Первые шаги к созданию биотоплива предпринимались с появления бутанола (бутилового спирта). Тогда использовался процесс ферментации с участием бактерии Clostridium acetobutylicum, называемый также ABE-процессом по названию трёх конечных продуктов брожения – ацетона, бутанола и этанола. Огромное значение в развитии биотоплива сыграла автопромышленность. Уже в 1826 американский изобретатель С. Мори создал двигатель, топливом для которого служили спирт и скипидар. Было доказано, что растительное масло вполне можно употреблять в качестве горючего для паровых машин и пароходов. В 1876 немецкий изобретатель Н. Отто создал первый в мире четырёхтактный двигатель внутреннего сгорания, работавший на этаноле. Различными модификациями этого двигателя мы пользуемся до сих пор. Создавались и ещё более необычные проекты. Например, в 1895 Р. Дизель предложил тип дизельного мотора, основанного на использовании арахисового масла. Г. Форд был настолько уверен в будущем спиртовых автомобилей, что даже построил на Среднем Западе США спиртоперегонный завод, куда вложил немалые средства. Во время 1-й мировой войны автомобили большинства стран мира использовали этанол в качестве топлива наряду с бензином.

В 17 в. Я. Б. ван Гельмонт обнаружил, что разлагающаяся биомасса выделяет воспламеняющиеся газы. А. Вольта в 1776 пришёл к выводу о существовании зависимости между количеством разлагающейся биомассы и количеством выделяемого газа. В 1808 сэр Г. Дэви обнаружил метан в биогазе. Первая биогазовая установка была построена в Бомбее в 1859. В 1895 биогаз применялся в Великобритании для уличного освещения. В 1930, с развитием микробиологии, были обнаружены бактерии, участвующие в процессе производства биогаза. В СССР исследования проводились в 1940-х гг.; в 1948–54 была разработана и построена первая лабораторная установка. Наблюдается устойчивая тенденция использовать биогаз для решения самых разнообразных энергетических вопросов: отопления жилья, получения электричества, производства надёжного автомобильного топлива. В то же время механизмы его производства постоянно совершенствуются, разрабатываются новые, более практичные и экономные способы получения качественного топлива.

Тенденции развития мирового рынка биотоплива

Движущими факторами для распространения биотоплива являются угрозы, связанные с энергетической безопасностью, изменением климата и экономическим спадом. Распространение производства биотоплива по всему миру нацелено на увеличение доли потребления экологически чистого топлива, особенно на транспорте; снижение зависимости от импортируемой нефти для многих стран; снижение выбросов парниковых газов; развитие экономики. Биотопливо является альтернативой традиционным видам топлива, получаемым из нефти. Мировыми центрами производства биотоплива в 2014 являются США, Бразилия и Европейский Союз. Самый распространённый вид биотоплива – биоэтанол, его доля составляет 82% всего производимого в мире топлива из биологического сырья. Ведущими его производителями являются США и Бразилия. На 2-м месте находится биодизель. В Европейском Союзе сосредоточено 49% производства биодизеля. В долгосрочной перспективе постоянно растущий спрос на биотопливо со стороны наземного, воздушного и морского транспорта может сильно изменить сложившуюся ситуацию на мировом рынке энергоносителей. Использование сельскохозяйственного сырья для производства жидкого биотоплива и рост объёмов его производства обусловили спрос на сельскохозяйственную продукцию, что повлияло на цены продовольственных культур, используемых при производстве биотоплива. Объём производства биотоплива второго поколения продолжает расти, и к 2017 мировое производство биотоплива второго поколения должно составить 10 млрд. литров. Мировое производство биотоплива к 2017 должно увеличиться на 25% и составить ок. 140 млрд. литров. В Европейском Союзе основная часть производства биотоплива приходится на биодизель, производимый из семян масличных культур (рапса). По прогнозам, в странах Евросоюза будет расширяться производство биоэтанола из пшеницы и кукурузы, а также сахарной свёклы. В Бразилии, как ожидается, производство биоэтанола будет продолжать расти ускоренными темпами и достигнет к 2017 примерно 41 млрд. литров. В целом производство биоэтанола и биодизеля, согласно прогнозу, к 2017 будет возрастать быстрыми темпами и составит 125 и 25 млрд. литров соответственно. Начался быстрый рост производства биотоплива в Азии. По данным на 2014, Китай находится на третьем месте по производству биоэтанола, и ожидается, что это производство будет расти в течение следующих десяти лет более чем на 4% в год. В Индии производство биоэтанола из мелассы, согласно прогнозам, будет увеличиваться более чем на 7% в год. При этом расширяется производство биодизеля из новых культур, таких как ятрофа.

По прогнозам Мирового энергетического агентства (МЭА), нехватка нефти в 2025 будет оцениваться в 14%. По данным МЭА, если даже общий объём производства биотоплива (в том числе биоэтанола и биодизеля) к 2021 составит 220 млрд. литров, то его производство покроет лишь 7% мировой потребности в топливе. Темпы роста производства биотоплива намного отстают от темпов роста потребности в них. Происходит это из-за наличия дешёвого сырья и недостаточного финансирования. Массовое коммерческое использование биотоплива будет определяться достижением ценового равновесия с традиционными видами топлива, получаемыми из нефти. По прогнозам учёных, доля возобновляемых источников энергии к 2040 достигнет 47,7%, а биомассы – 23,8%.

При существующем уровне развития технологий производство биотоплива будет составлять небольшую часть глобальных поставок энергии, цены на энергию будут оказывать влияние на стоимость сельскохозяйственного сырья. Биотопливо может по-разному воздействовать на продовольственную безопасность – рост цен на сырьевые товары, обусловленный производством биотоплива, может нанести ущерб импортёрам продовольствия, с другой стороны, стимулировать внутреннее сельскохозяйственное производство мелкими фермерскими хозяйствами.

Такой термин, как «биодизель », большинству понятен чисто интуитивно. Но зачастую при этом происходит определенная путаница. Ничего страшного, но все-таки лучше обойтись без нее и разобраться, что же такое биодизель. Немного теории При работе в его цилиндрах происходит сгорание бензина или дизельного топлива. То и другое является продуктом переработки нефти, запасы которой ограничены, кроме того, при сжигании этих видов горючего образуются вещества, наносящие вред людям и окружающей среде. Одним из вариантов, позволяющим избежать подобного, является применение биодизеля как топлива для двигателей. Надо пояснить, что оно собой представляет. Дело в том, что производство биодизеля основано на использовании животных жиров и растительного масла как исходного сырья. Можно провести простую аналогию – из нефти получают бензин и солярку, из масла или жира возможно получение топлива для работы ДВС.

Небольшое уточнение – в качестве горючего для работы моторов могут применяться разные вещества, например тот же самый спирт, получаемый из опилок, но в данном случае мы рассматриваем топливо именно для дизельных двигателей, а сырьем для биодизеля, так называется этот вид горючего, служат масло или остатки жира.

Как использовать биотопливо?

Использование жира и масла в качестве горючего может осуществляться такими способами: ✔ Напрямую, заливая масло в бак. Недостатком такого подхода будет неполное его сгорание, смешивание со смазкой и ухудшение ее смазочных свойств, а также появление отложений на форсунках, кольцах, поршнях из-за повышенной вязкости растительного топлива. ✔ Смешивая его с керосином или дизельным топливом. ✔ Путем преобразования растительного масла, источником получения которого может быть рапс, кукуруза, подсолнечник и т.д., и в итоге получение биодизеля. Наиболее сложной из упомянутых считается технология преобразования масла, но тем не менее, она настолько проста, что легко реализуется, благодаря чему можно получить биодизель в домашних условиях.

Что такое биодизель?

Фактически биодизель является смесью эфиров, в основном это метиловый эфир, как результат химической реакции. К его достоинствам следует отнести: ✔ растительное происхождение, благодаря возможности выращивания растений мы получаем возобновляемый источник топлива; ✔ биологическая безопасность, биодизель является экологически безвредным, его попадание в окружающую среду не наносит ей никакого вреда; ✔ меньший уровень выбросов двуокиси углерода и других отравляющих веществ; ✔ незначительное содержание серы в выхлопных газах моторов, использующих биодизель; ✔ хорошие смазочные характеристики.

По сути дела, растительное масло – это смесь эфиров с глицерином, который придает ему вязкость. Процесс производства биодизеля основан на том, что надо удалить глицерин и заменить его спиртом. Стоит отметить, что недостатком такого топлива является необходимость его подогрева при низких температурах или применения смеси биодизеля и обычной солярки.

Технология производства

Технология производства биодизеля достаточно проста. Обычно его изготовление осуществляется из различных сортов растительного масла. Для этого может быть использован рапс, соя, кукуруза и т.д., общий список веществ, пригодных для получения исходного сырья достаточно значителен. Для производства биодизеля также подходит масло, оставшееся после приготовления пищи. Схему подобного процесса можно увидеть на приведенном рисунке.

Раз мы рассматриваем топливо растительного происхождения, то и технология его изготовления должна охватывать процесс выращивания исходного сырья. Наиболее подходящим для этого считается рапс, как требующий меньших затрат на получение. Хотя сейчас появляются большие перспективы у биодизеля из водорослей. При этом не занимается земля для выращивания культуры на топливо, и величина себестоимости биодизеля будет ниже, чем в других случаях. Так вот, семена (рапс, соя, подсолнечник и т.д.) после проверки качества поступают на маслобойку. Оставшийся после производства масла шрот может быть использован комбикормовой промышленностью, а полученное масло, как предусматривает технология, идет на дальнейшую обработку. Она называется этерификацией, и после ее проведения, метиловых эфиров в составе биодизеля должно содержаться более девяноста шести процентов. Сама технология проста, что делает возможным организацию производства биодизеля в домашних условиях. К маслу добавляется метанол (9:1), и в качестве катализатора – небольшое количество щелочи. Метанол может быть получен из опилок, а также вместо него допускается применять изопропиловый спирт или этанол. Процедура этерификации проходит в условиях повышенной температуры и занимает до нескольких часов. После окончания реакции в емкости наблюдается расслоение жидкости – сверху биодизель, внизу глицерин. Глицерин удаляется (сливается снизу) и может использоваться в качестве сырья в каких-то других процессах. Получившийся биодизель надо очистить, порой вполне достаточно бывает выпаривания, отстаивания и последующей фильтрации. Подробней промышленный процесс производства приведен на видео.

Биодизель в домашних условиях

Как видно из представленного описания, технология производства достаточно проста и позволяет изготавливать биодизель своими руками, вплоть до того, что в домашних условиях можно получать топливо, и порой не только для собственных нужд. Причины, по которым можно взяться за подобную работу, у каждого могут быть разными, но не касаясь их, стоит отметить, что во всем мире потребление биодизеля только растет. Когда в домашних условиях изготавливают биодизель своими руками, главной проблемой будет не вопрос его производства, а обеспечение качества готовой продукции. Поставщиками сырья могут стать предприятия общественного питания, у которых в достаточном объеме есть использованное масло, и его можно купить по доступной цене. Выращиванием рапса стоит заниматься при потреблении биодизеля в большом количестве, например, для реализации на сторону или наличия большого парка техники. При организации производства в домашних условиях наиболее актуальными будут проблемы: ✔ Плохой выход, т.е. из первоначального сырья получается не более девяноста трех процентов готовой продукции. Обусловлено это может быть особенностями используемой в домашних условиях установки или режимами переэтерефикации. ✔ Некачественная фильтрация. Подобный процесс достаточно сложный, и для получения в домашних условиях качественного биодизеля, ему надо уделить особое внимание. Для этого используются специальные технологии или адсорбенты. Непосредственно с установкой по производству подобного топлива, можно ознакомиться на видео.

Существуют и другие варианты установок для производства в домашних условиях биодизеля, изготавливаемые промышленным способом.

Перспективы

Как уже отмечалось, производство такого топлива только растет. И хотя сырьем для этого служит растительное масло, его получают в разных местах из разных культур. В Европе – рапс, в Индонезии – пальмовое масло, в Америке – соя, и т.д. Однако наиболее перспективным считается получение биодизеля из водорослей. Для их выращивания могут использоваться как отдельные пруды, так и специальные биореакторы, а также участки морского побережья. Кроме того, при этом не только растет производство топлива, но и освобождаются земли для выращивания продуктов питания. Хотя биодизель изготавливается из растительного масла, а не из опилок, он является отличным заменителем обычной солярки. Особенно в условиях ограниченных запасов нефти. И кроме того, нельзя исключать такого его достоинства, как возможность производства в домашних условиях. Несмотря на то, что при промышленном производстве он получается дороже солярки, тем не менее, является отличным альтернативным видом топлива для дизелей.

Химический процесс получения биодизеля

Для получения биодизеля используют любые виды растительных масел - подсолнечное, рапсовое, льняное и т.д. При этом биодизель полученный из разных масел имеет некоторые отличия. Так, например пальмовый биодизель имеет наибольшую калорийность, но и самую высокую температуру фильтруемости и застывания. Рапсовый биодизель несколько уступает пальмовому по калорийности, но лучше переносит холод, потому более всего подходит для европейских стран и России. Химически биодизель - это метиловый эфир, являющийся продуктом реакции этерификации растительного масла при температуре около 50 C в присутствии катализатора. Сам процесс, в принципе, достаточно прост. Нужно уменьшить вязкость растительного масла, чего можно достичь различными способами. Любое растительное масло - это смесь триглицеридов, т. е. эфиров, соединенных с молекулой глицерина с - трехатомным спиртом (C3H8O3 ). Именно глицерин придает вязкость и плотность растительному маслу. Задача при приготовлении биодизеля - удалить глицерин, заместив его на спирт. Этот процесс называется трансэтерификацией . Реакция в целом выглядит так: CH2OC=OR1 | CHOC=OR2 + 3 CH3OH > (CH2OH)2CH-OH + CH3COO-R1 + CH3COO-R2 + CH3OC=O-R3 | CH2COOR3 | Триглицериды+метанол> глицерол+эфиры, МА «Навигатор» Технологии и оборудование по производству биодизельного топлива 10 Где R1, R2, R3: алкильные группы. В результате применения метанола образуется метиловый эфир, в результате использования этанола - этиловый эфир. Из одной тонны растительного масла и 111 кг спирта (в присутствии 12 кг катализатора) получается приблизительно 970 кг (1100 л) биодизеля и 153 кг первичного глицерина. В качестве щелочи берется гидроксид калия КОН или гироксид натрия - NaOH. Для начинающих рекомендуется использовать именно NaOH.

Преимущества биодизельного топлива

Главное преимущество биодизеля – это то, что его производят из ресурсов, которые быстро восстанавливаются (запасы нефти, например, практически невосстановимы). К примеру, данный вопрос является очень актуальным для коллективных хозяйств, которые занимаются переработкой масла, у всех встает больной вопрос, где взять солярку к началу сезона. Ответ прост, сделать биодизель из своего же сырья и быть полностью автономными в потреблении топлива. Растительное происхождение . Подчеркнем, что биодизель не обладает бензоловым запахом и изготавливается из масел, сырьем для которых служат растения, улучшающие структурный и химический состав почв в системах севооборота. Сырьем для производства биодизеля могут быть различные растительные масла: подсолнечное, рапсовое, соевое, арахисовое, пальмовое, хлопковое, льняное, кокосовое, кукурузное, горчичное, касторовое, конопляное, кунжутное, отработанные масла (использованные, например, при приготовлении пищи), а также животные жиры. Экология . Сильной стороной биодизеля так же является то, что он при сгорании выбрасывает в атмосферу гораздо меньше вредных газов (биодизель в сравнении с минеральным аналогом почти не содержит серы (Биологическая безвредность. По сравнению с минеральным маслом, 1 литр которого способен загрязнить 1 млн литров питьевой воды и привести к гибели водной флоры и фауны, биодизель, как показывают опыты, при попадании в воду не причиняет вреда ни растениям, ни животным. Кроме того, он подвергается практически полному биологическому распаду: в почве или в воде микроорганизмы за месяц перерабатывают 99% биодизеля, что позволяет говорить о минимизации загрязнения рек и озер при переводе водного транспорта на альтернативное топливо. Меньше выбросов СО2 . При сгорании биодизеля выделяется ровно такое же количество углекислого газа, которое было потреблено из атмосферы растением, являющимся исходным сырьем для производства масла, за весь период его жизни. Тем не менее, следует заметить, что назвать биодизель экологически чистым топливом было бы неверно. Он дает меньшее количество выбросов углекислого газа в атмосферу, чем обычное дизтопливо, но все таки это не нулевой выброс. Хорошие смазочные характеристики . Известно, что минеральное дизтопливо при устранении из него сернистых соединений теряет свои смазочные способности. Биодизель же, несмотря на значительно меньшее содержание серы, характеризуется хорошими смазочными свойствами. Это обуславливается его химическим составом и содержанием в нем кислорода. Например, грузовик из Германии попал в Книгу рекордов Гиннеса, проехав более 1,25 миллиона километров на биодизельном топливе со своим оригинальным двигателем. Увеличение срока службы двигателя . При работе двигателя на биодизеле одновременно производится смазка его подвижных частей, в результате которой, как показывают испытания, достигается увеличение срока службы самого двигателя и топливного насоса в среднем на 60%. Важно отметить, что нет необходимости модернизировать двигатель. Высокая температура воспламенения . Еще один технический показатель, интересный для организаций, хранящих и транспортирующих ГСМ: точка воспламенения. Для биодизеля, ее значение превышает 150°С, что позволяет назвать биогорючее относительно безопасным веществом. Тем не менее, это не означает, что к нему можно относиться с халатностью.

Рентабельность производства биодизеля

Со 150 га. можно собрать 400 тонн рапса из которого получится 180 тонн масла, 210 тонн жмых. После переработке 180 тонн масла в биодизель образуется побочный продукт - глицерин в количестве 27,5 тонн. Биодизеля получаем в количестве 198 000 литров. Для производства потребуется 20 000 литров спирта, 2 160 кг. катализатора. 28 000 литров биодизеля оставляем на собственные нужды. 170 000 топлива реализуем по цене 20 руб. за 1 литр = 3 400 000 руб. 210 тонн жмых реализуем по цене 5 руб. за 1 кг. = 1 050 000 руб. 27,5 тонн глицерина реализуем по цене 25 руб за кг. = 687 500 руб. выручка составит в размере 5137500 руб. затраты: 20 000 литров спирта по цене 49 руб. за 1 литр = 980 000 руб. 2 160 кг. катализатора по цене 23 руб за 1 кг. = 49 680 руб. з/п 3 чел. по 15 000 руб. в месяц за год = 540 000 руб. электроэнергии 32 000 кВт по цене 4,5 руб за 1 кВт = 144 000 руб. итого: 1 713 680 руб . Заключение Биодизель и его производство - это одно из самых перспективных и выгодных направлений для малого бизнеса, оно позволяет получать высокие прибыли, при этом сохраняется благоприятная экологическая среда. Цикл производства практически безотходный, сырье может выращиваться на используемых землях. После производства биотоплива остается жмых, который используют в качестве корма для животных и глицериновая фаза, которая при очистке превращается в чистый глицерин. Доходность этого производства весьма велика, прибыль составляет разницу между затратами на сырье и суммой, полученной от реализации топлива. Рентабельность этого вида бизнеса высокая, ведь спрос на биотопливо возрастает день ото дня.

Ирина Медведкова и Татьяна Трудаева

Понятие «биотопливо» включает в себя три вида топлива, получаемого из биологического сырья: твердое топливо (древесина, отходы деревопереработки, щепа, лузга и т.п.); жидкое топливо, используемое в транспортных средствах с двигателями внутреннего сгорания (этанол, биодизель, метанол); газообразное топливо (синтезированные в ходе переработки биомассы газы). Однако, как правило, при обсуждении этого вопроса, особенно на Западе, под биотопливом традиционно понимают именно жидкое топливо. В настоящей статье также рассматривается именно этот вид топлив а.

Основными видами биотоплива являются биоэтанол и биодизель. Различают два поколения биотоплива. К биотопливу первого поколения (1G) относят биоэтанол, получаемый из традиционного пищевого сырья (сахарной свеклы, тростника, кукурузы, зерновых), биодизель, получаемый из пищевых растительных масел (рапса, пальмового масла и пр.), а также чистые растительные масла. Экономические, экологические и социальные последствия использования биотоплива первого поколения оказались в центре внимания широкой общественности, получили неоднозначную оценку в средствах массовой информации и явились предметом политических дебатов и кампаний гражданского общества.

Биотопливо второго поколения (2G) или «улучшенное биотопливо» получают уже по новым технологиям из непродовольственного биосырья, что позволяет в какой-то степени ослабить общественную обеспокоенность по поводу конверсии продовольствия в топливо, а также роста цен на продовольствие в мире. Сырьем здесь уже выступают отдельные виды специально выращиваемых энергетических растений, отходы деревопереработки и пищевые отходы. Конечный продукт (например, целлюлозный этанол) по своим физическим свойствам является таким же, как производимый по технологии первого поколения, однако продукт 2G считается более приемлемым с точки зрения устойчивого развития, так как обычно его производство предполагает сокращение выбросов парниковых газов и отказ от использования продовольственных культур в качестве сырья. Новым направлением развития биоэнергетики является использование в качестве исходного сырья водорослей. Энергетический выход переработки водорослевой биомассы превосходит любое другое непродовольственное сырье; выращивание водорослей не требует эксплуатации земельных угодий, что позволяет рассматривать водоросли как экологически устойчивое биосырье, не имеющее негативных последствий с точки зрения сохранения биоразнообразия и соответствующего принципам устойчивого развития землепользования. В ряде исследований биотопливо, получаемое из водорослей, называют даже биотопливом не второго, а третьего поколения.

За последние 15 лет производство «зеленого» топлива увеличилось в десятки раз, а его текущий объем превысил 60 млн тонн в год. Все регионы мира участвуют в производстве и потреблении биотоплива (см. график). Международные организации, независимые консультанты и ассоциации производителей биотоплива прогнозируют существенный рост производства и потребления биотоплива в мире к 2020 году. Предполагается, что к 2020 г. около 15% топлива для транспортных средств в мире будет производиться из биологического сырья.

По данным исследовательской компании RNCOS, на долю Бразилии и США приходится 87% мирового производства биотоплива, что в первую очередь обусловлено мощной государственной поддержкой. Эксперты организации ожидают дальнейший рост производства биотоплива в мире, прогнозируя ежегодный 6%-й рост производства биодизеля и 5%-й рост этанола в ближайшем десятилетии. Существенный рост потребления биотоплива ожидается в первую очередь в таких странах, как Индия и Китай. Эксперты ОЭСР и ФАО прогнозируют даже более высокие темпы роста производства биотоплива, ожидая удвоения объемов в ближайшие десять лет. Международная торговля биотопливом в следующем десятилетии преимущественно будет расти за счет экспорта этанола, в основном из Бразилии в США и ЕС. В отношении биодизеля, напротив, не стоит ожидать существенного роста международной торговли из-за активного использования странами технических барьеров, защитных мер, а также из-за увеличения национального производства биодизельного топлива странами-потребителями.

Биотопливо в США

Согласно федеральному Закону 2007 г. и национальному Стандарту по возобновляемым видам топлива, нефтеперегонные заводы в США обязаны применять при производстве бензина 50 млрд л биотоплива. По данным Минсельхоза США, прогнозируемый урожай кукурузы в 2013 г. составит 268 млн т, самый низкий показатель за последние 6 лет (ожидается, что цены превысят 320 долл. США за тонну). Примерно 112,5 млн т кукурузы, или 42% ожидаемого урожая, должно быть использовано для производства этанола. В стране нарастает оппозиция производству возобновляемого биотоплива из кукурузы. Конкуренция скотоводов с производителями этанола за поставки кукурузного зерна приводит к росту цен на зерно и снижению прибыльности производителей мяса. «Оптимизация» производства биотоплива под действием рыночных сил, по данным Министерства энергетики США, уже способствовала снижению объемов на 14% до 824 баррелей в день, что за год составляет 47,7 млрд литров. Однако, по подсчетам Федерального агентства по охране окружающей среды (EPA), отмена этаноловой составляющей в бензине снизит цены на кукурузу лишь на 1%, т.е. свидетельств «жестокого экономического вреда» от применения смешанного бензина не выявлено и оснований для отказа от его применения нет. Существующее законодательство предписывает довести ежегодное производство этанола к 2015 г. до 56,8 млрд л и к 2022 г. – до 136 млрд л; при этом основные перспективы связаны с биотопливом второго поколения.

Биотопливо в Европе

Согласно данным европейского Барометра по биотопливу за 2012 г., зафиксирован 3%-й рост потребления биотоплива в 2011 г. по сравнению с 2010 г., с 13,2 млн тонн нефтяного эквивалента до 13,6 млн тонн. В 2009 г. Европейская Комиссия приняла решение повысить к 2020 г. долю биотоплива для транспорта до 10%. Это должно было снизить зависимость от поставок нефти и газа и одновременно сократить выбросы углекислого газа в атмосферу. Однако обратной стороной медали оказалась проблема выведения сельскохозяйственных площадей из «пищевого» оборота, переработка пищевых масляничных культур на биотопливо. Евросоюз гарантировал высокие субсидии фермерам, которые вложили деньги в оборудование по переработке сельскохозяйственных пищевых культур «на месте». В конце 2012 г. ЕС принял Директиву, ограничивающую долю биотоплива первого поколения (с 10 до 5% к 2020 г.) и поощряющую разработку биотоплива второго поколения. После 2020 г. финансирование со стороны ЕС будет получать только биотопливо, способствующее экономии парниковых газов (должно выделяться минимум на 35% меньше парниковых газов, чем у ископаемого топлива) и производимое из непищевых растений и биомассы. Новая Директива ЕС по возобновляемой энергетике направлена на предотвращение прямого использования лесов, водно-болотных угодий и территорий с высокой ценностью для производства биотоплива.

Биотопливо в Китае

В настоящее время Китай является третьим по величине в мире производителем биотоплива (после США и Бразилии). Этанол, как правило, добавляют в объеме 10% к традиционному топливу. Этанол первоначально производился из зерна, но новые заводы теперь преимущественно используют маниок, сладкий картофель или сорго. Спрос на биодизель в Китае также растет, однако внутреннее производство значительно отстает в масштабе. Растет интерес к производству и использованию биотоплива второго поколения: потребление энергии из возобновляемых источников должно достигнуть 11,4% к 2015 году. Расширение производства биотоплива второго поколения позволит обеспечить рабочими местами до 3 млн человек. Как один из перспективных источников сырья для производства нового биотоплива в Китае рассматриваются водоросли. По оценкам экспертов, Китай может производить к 2020 г. до 12 млн т авиационного биотоплива в год (30% от общего объема потребления реактивного топлива в стране).

Биотопливо в России и Украине

Производство жидкого биотоплива в России пока развито достаточно слабо. Применение моторного жидкого топлива российским транспортом практически отсутствует. Однако достаточно перспективной для России выглядит возможность экспорта биотоплива и биосырья в Европу. Основным источником производства биоэтанола в стране (около 1,5 млрд л ежегодно) пока является пищевое сырье, а именно зерновые, при этом 80% этанола идет на изготовление алкогольных напитков. Перспективной с точки зрения выпуска транспортного топлива выглядит возможность использования в качестве сырья других крахмалосодержащих продуктов: мелассы (отходы сахарного производства), картофеля, сладкого сорго, клубней и зеленой массы топинамбура.

Производство биодизеля в стране началось в 2007 г. с выращивания рапса в промышленных масштабах и изготовления рапсового масла. Однако отсутствие единой программы развития биодизельного топлива в стране в некоторой степени компенсируется созданием отдельных региональных программ. Рассматривается возможность использования биомассы диких видов однолетней травы рыжик (лат. Camelina, Каспийский регион) для производства биодизеля второго поколения.

Украина имеет благоприятные условия для производства биотоплива из выращиваемого сельскохозяйственного сырья. По мнению экспертов, общий объем потенциально производимого «зеленого» дизеля и моторного этанола может достигать 500 тыс т ежегодно, что позволит обеспечить до 60% общей потребности страны в дизтопливе и до 10% в бензине. В Украине с 2013 г. предусмотрено поэтапное увеличение нормативной примеси биоэтанола в моторном бензине, в частности, в 2013-2015 гг. – 5%, а с 2016 г. – не менее 7%.

Потенциальное воздействие применения биотоплива

Рост рынка биотоплива способствует созданию новых рабочих мест и доходов по всей цепочке производства и распределения: от фермеров и биотехнологов до дистрибьютеров. Новые рабочие места, скорейшее восстановление экономик, рост производства, новые инвестиционные возможности – положительные эффекты, отмечаемые исследованиями по изучению потенциальных последствий развития индустрии биотоплива в мире. США ожидают в результате развития индустрии биотоплива к 2022 г. создания 800 тыс новых рабочих мест с общим экономическим эффектом в 148 700 млрд долл. США, что позволит за 12 лет (2010-2022 гг.) сэкономить 350 млрд долл. на сокращении импорта нефти.

Энергетическое партнерство между Европейским союзом и странами Африки открывает путь для сотрудничества по производству возобновляемых источников энергии, включая биотопливо. В ходе реализации совместных проектов предполагается проведение работ по агромелиорации засушливых районов в странах Африки. Развитие рынка биотоплива позволит странам Африки сократить зависимость от импорта минерального топлива и увеличить экспортные доходы. Нехватка продовольствия, засуха и социальная стабильность – вопросы, требующие решений во многих регионах Африки в ближайшей перспективе.

Общественные опасения, связанные с биотопливом

В настоящий момент существует ряд вызывающих тревогу международного сообщества проблем, сопутствующих развитию технологий производства биотоплива:

· изъятие из традиционного сельхозоборота земель под выращивание биотопливных монокультур, что способствует падению плодородия таких земель, сокращению производства пищевого растительного сырья в отдельных странах, росту цен на продовольствие на национальном и глобальном уровне;

· использование для производства биотоплива пищевого сырья (зерновых, кукурузы, сахарной свеклы и тростника, рапса), что может также привести к росту цен на продовольствие в мире и, как следствие, увеличению числа голодающих людей в беднейших странах.

Мировые эксперты однозначно выступают за использование в качестве исходного сырья биомассы второго поколения. Отдельное место занимают экологические проблемы: уничтожение лесных массивов под выращивание быстрорастущих энергетических растений и загрязнение атмосферы выхлопными газами в результате сгорания биотоплива.

Очевидна необходимость разработки и применения стандартов устойчивого развития в области производства и использования биотоплива. Такие стандарты должны охватывать процессы производства и переработки основных энергетических культур и действовать во всех странах-производителях; направлениями реализации этого подхода должны быть единые меры контроля и сертификации. Это позволит в определенной мере защитить уязвимые группы населения в развивающихся и наименее развитых странах, создать равные условия для глобальной торговли биотопливом, повысить социальную приемлемость биотоплива среди потребителей. Однако эти меры не должны препятствовать развитию передовых видов биотоплива, что отвечает интересам энергетической безопасности в мире.

Ирина Медведкова - к.т.н., доцент кафедры торговой политики НИУ ВШЭ
Татьяна Трудаева - к.э.н., доцент кафедры торговой политики НИУ ВШЭ

Аналитические материалы по теме торговля и устойчивое развитие доступны .
Подпишись на рассылку!

Неправительственной организации « », попытки перевода ощутимой части потребителей энергии на биотопливо фактически не имеют смысла. По их расчётам, в погоне за добычей биомассы для переработки в топливо человечество окажется неспособным набрать необходимое её количество. Итог отчёта включает в себя следующие пункты.

Повышенная добыча биомассы для топлива уменьшает возможности по производству пищи

В 2050 году по прогнозам потребуется производить пищи на 70% больше, чем сейчас. Если следовать амбициозным планам развитых экономик, по которым к этому времени нужно будет перевести порядка 20% потребителей на биотопливо, то количество собираемой биомассы нужно будет как минимум удвоить – а это нереально.

Использование биоэнергетики слишком неэффективно

Выращиваемый в тропиках сахарный тростник преобразовывает всего лишь 0.5% солнечной энергии в сахар, и всего лишь 0.2% в этанол. Маис, который можно выращивать в Айове, перерабатывает 0.3% энергии в сахар и 0.15% в этанол. На трёх четвертях поверхности Земли сегодняшние солнечные батареи способны производить примерно в 100 раз больше энергии, чем когда-либо смогут растения, даже по самым оптимистичным прогнозам.

Использование биотоплива не уменьшает выбросы СО 2 в атмосферу

Существует теория, по которой излишние выбросы углекислого газа в результате человеческой деятельности влияют на климат планеты. Сторонники биотоплива любят доказывать, что поскольку растениям нужно сначала вырасти и потребить углекислый газ, то это количество газа можно «вычесть» из результирующего выхлопа при сгорании биотоплива. Однако, поскольку эти растения в любом случае выросли бы (например, в пищу), то тот факт, что они будут использоваться для производства топлива, не убирает углекислый газ из атмосферы.

Польза биотоплива преувеличена

Конечно, существуют, например, отходы при обработке растений – опилки, обрезки, стебли и проч. Но их объём и возможность использования попросту ограничены.

Отчёт появился в результате многолетних опасений разных учёных, которые критиковали наполеоновские планы США и Европы по увеличению выращивания культур для производства биотоплива. Например, по указу, который работает со времён администрации Дж. Буша, 30-40% урожая зерна должно быть преобразовано в биотопливо для автомобилей, чтобы заместить порядка 6% потребности в бензине.

Другим примером является переход Европы на сжигание спрессованных древесных отходов вместо ископаемого угля. Американцы, поставляющие эти отходы в Европу, убеждают всех, что сжигание этих отходов не увеличивает количество углекислоты в атмосфере, поскольку заново растущие деревья её поглощают – а вот ископаемый уголь добавляет в атмосферу СО 2 , который до этого хранился в связанном виде под землёй. Однако учёные обеспокоены, что в реальности этот процесс уменьшает количество деревьев на планете.



Поделиться