Скорость ракеты с ядерным двигателем. Что такое ядерные двигатели? Ракета из ада

Уже в конце нынешнего десятилетия в России может быть создан космический корабль для межпланетных путешествий на ядерной тяге. И это резко изменит ситуацию и в околоземном пространстве, и на самой Земле.

Ядерная энергодвигательная установка (ЯЭДУ) будет готова к полету уже в 2018 году. Об этом сообщил директор Центра имени Келдыша, академик Анатолий Коротеев . «Мы должны подготовить первый образец (ядерной энергетической установки мегаваттного класса. – Прим. "Эксперта Online") к летно-конструкторским испытаниям в 2018 году. Полетит она или нет, это другое дело, там может быть очередь, но она должна быть готова к полету», – передало его слова РИА « Новости» . Сказанное означает, что один из самых амбициозных советско-российских проектов в области освоения космоса вступает в фазу непосредственной практической реализации.

Суть этого проекта, корни которого уходят еще в середину прошлого века, вот в чем. Сейчас полеты в околоземное пространство осуществляются на ракетах, которые движутся за счет сгорания в их двигателях жидкого или твердого топлива. По сути, этот тот же двигатель, что и в автомобиле. Только в автомобиле бензин, сгорая, толкает поршни в цилиндрах, передавая через них свою энергию колесам. А в ракетном двигателе сгорающие керосин или гептил непосредственно толкают ракету вперед.

За прошедшие полвека эта ракетная технология была отработана во всем мире до мелочей. Но и сами ракетостроители признают, что . Совершенствовать – да, нужно. Пытаться увеличить грузоподъемность ракет с нынешних 23 тонн до 100 и даже 150 тонн на основе «усовершенствованных» двигателей сгорания – да, нужно пытаться. Но это тупиковый путь с точки зрения эволюции. «Сколько бы специалисты всего мира по ракетным двигателям ни трудились, максимальный эффект, который мы получим, будет исчисляться долями процентов. Из существующих ракетных двигателей, будь это жидкостные или твердотопливные, грубо говоря, выжато все, и попытки увеличения тяги, удельного импульса просто бесперспективны. Ядерные же энергодвигательные установки дают увеличение в разы. На примере полета к Марсу – сейчас надо лететь полтора-два года туда и обратно, а можно будет слетать за два-четыре месяца », – оценивал в свое время ситуацию экс-глава Федерального космического агентства России Анатолий Перминов .

Поэтому ещё в 2010 году, тогдашнем президентом России, а ныне премьер-министром Дмитрием Медведевым было дано распоряжение к концу этого десятилетия создать в нашей стране космический транспортно-энергетический модуль на основе ядерной энергетической установки мегаваттного класса. На разработку этого проекта до 2018 года из средств федерального бюджета, «Роскосмоса» и «Росатома» запланировано выделить 17 млрд рублей. 7,2 млрд из этой суммы выделено госкопорации «Росатом» на создание реакторной установки (этим занимается Научно-исследовательский и конструкторский институт энерготехники имени Доллежаля), 4 млрд – Центру имени Келдыша на создание ядерной энергодвигательной установки. 5,8 млрд рублей предназначается РКК «Энергия» для создания транспортно-энергетического модуля, то есть, проще говоря, ракеты-корабля.

Естественно, все эти работы делаются не на пустом месте. С 1970 по 1988 годы в космос только СССР запустил более трех десятков спутников-шпионов, оснащенных ядерными силовыми установками малой мощности типа «Бук» и «Топаз». Они использовались при создании всепогодной системы наблюдения за надводными целями на всей акватории Мирового океана и выдачи целеуказания с передачей на носители оружия или командные пункты – система морской космической разведки и целеуказания «Легенда» (1978 год).

NASA и американские компании, производящие космические аппараты и средства их доставки, так и не смогли за это время, хоть и трижды пытались, создать ядерный реактор, который бы устойчиво работал в космосе. Поэтому в 1988 году через ООН был проведен запрет на использование космических аппаратов с ядерными энергетическими двигательными установками, и производство спутников типа УС-А с ЯЭДУ на борту в Советском Союзе было прекращено.

Параллельно в 60-70-е годы прошлого века Центр имени Келдыша вел активные работы по созданию ионного двигателя (электроплазменного двигателя), который наиболее подходит для создания двигательной установки большой мощности, работающей на ядерном топливе. Реактор выделяет тепло, оно генератором преобразуется в электричество. С помощью электричества инертный газ ксенон в таком двигателе сначала ионизируется, а затем положительно заряженные частицы (положительные ионы ксенона) ускоряются в электростатическом поле до заданной скорости и создают тягу, покидая двигатель. Вот такой принцип работы ионного двигателя, прототип которого уже создан в Центре имени Келдыша.

«В 90-х годах XX века мы в Центре Келдыша возобновили работы по ионным двигателям. Сейчас должна быть создана новая кооперация для такого мощного проекта. Уже есть прототип ионного двигателя, на котором можно отрабатывать основные технологические и конструктивные решения. А штатные изделия еще нужно создавать. У нас срок определен – к 2018 году изделие должно быть готово к летным испытаниям, а к 2015 году должна быть завершена основная отработка двигателя. Дальше – ресурсные испытания и испытания всего агрегата в целом », – отмечал в прошлом году начальник отдела электрофизики Исследовательского центра имени М.В. Келдыша, профессор факультета аэрофизики и космических исследований МФТИ Олег Горшков.

Какая практическая польза России от этих разработок? Эта польза намного превышает те 17 млрд рублей, которые государство намерено потратить до 2018 года на создание ракеты-носителя с ядерной силовой установкой на борту мощностью 1 МВт. Во-первых, это резкое расширение возможностей нашей страны и человечества вообще. Космический корабль с ядерным двигателем дает реальные возможности людям совершить и другим планетам. Сейчас многие страны таких кораблей. Возобновились они и в США в 2003 году, после того как к американцам попали два образца российских спутников с ядерными силовыми установками.

Однако, несмотря на это, член спецкомиссии NASA по пилотируемым полетам Эдвард Кроули, например, считает, что на корабле для международного полета к Марсу должны стоять российские ядерные двигатели. «Востребован российский опыт в сфере разработки ядерных двигателей. Я думаю, у России есть очень большой опыт как в разработке ракетных двигателей, так и в ядерных технологиях. У нее есть также большой опыт адаптации человека к условиям космоса, поскольку российские космонавты совершали очень долгие полеты », – сказал Кроули журналистам весной прошлого года после лекции в МГУ, посвященной американским планам пилотируемых исследований космоса.

Во-вторых , такие корабли позволяют резко активизировать деятельность и в околоземном пространстве и дают реальную возможность началу колонизации Луны (уже есть проекты строительства на спутнике Земли атомных станций). «Использование ядерных энергодвигательных установок рассматривается для больших пилотируемых систем, а не для малых космических аппаратов, которые могут летать на других типах установок, использующих ионные двигатели или энергию солнечного ветра. Использовать ЯЭДУ с ионными двигателями можно на межорбитальном многоразовом буксире. К примеру, возить грузы между низкими и высокими орбитами, осуществлять полеты к астероидам. Можно создать многоразовый лунный буксир или отправить экспедицию на Марс », – считает профессор Олег Горшков. Подобные корабли резко меняют экономику освоения космоса. По расчетам специалистов РКК «Энергия», ракета-носитель на ядерной тяге обеспечивает снижение стоимости выведения полезного груза на окололунную орбиту более чем в два раза по сравнению с жидкостными ракетными двигателями.

В-третьих , это новые материалы и технологии, которые будут созданы в ходе реализации этого проекта и затем внедрены в другие отрасли промышленности – металлургию, машиностроение и т.д. То есть это один из таких прорывных проектов, которые реально могут толкнуть вперед и российскую, и мировую экономику.

Ракетные двигатели на жидком топливе дали человеку возможность выйти в космос — на околоземные орбиты. Однако подобные ракеты сжигают 99% топлива за первые несколько минут полёта. Остатка топлива может не хватить для путешествия на другие планеты, да и скорость будет настолько малой, что вояж займёт десятки или сотни лет. Решить проблему могут ядерные двигатели. Как? Будем разбираться вместе.

Принцип работы реактивного двигателя очень прост: он переводит топливо в кинетическую энергию струи (закон сохранения энергии), за счёт направления этой струи ракета движется в пространстве (закон сохранения импульса). Важно понимать, что мы не можем разогнать ракету или самолёт до скорости большей, чем скорость истечения топлива — раскалённого газа, выбрасываемого назад.

Космический аппарат New Horizons

Что же отличает эффективный двигатель от неудачного или устаревшего аналога? Прежде всего то, сколько топлива потребуется двигателю, чтобы разогнать ракету до нужной скорости. Этот важнейший параметр ракетного двигателя называется удельный импульс , который определяется как отношение общего импульса к расходу топлива: чем больше этот показатель, тем эффективнее ракетный двигатель. Если ракета практически целиком состоит из топлива (это означает, что в ней нет места для полезного груза, предельный случай), удельный импульс можно считать равным скорости истечения топлива (рабочего тела) из ракетного сопла. Запуск ракеты — крайне дорогостоящее мероприятие, учитывается каждый грамм не только полезного груза, но и топлива, которое тоже весит и занимает место. Поэтому инженеры подбирают всё более и более активное горючее, единица которой давала бы максимальную отдачу, увеличивая удельный импульс.

Подавляющее большинство ракет в истории и современности было оборудовано двигателями, использующими химическую реакцию горения (окисления) топлива.

Они позволили достичь Луны, Венеры, Марса и даже планет дальнего пояса — Юпитера, Сатурна и Нептуна. Правда, космические экспедиции заняли месяцы и годы (автоматические станции Pioneer, Voyager, New Horizons и др.). Необходимо отметить, что все подобные ракеты расходуют значительную часть топлива для отрыва от Земли, и далее продолжают полёт по инерции с редкими моментами включения двигателя.

Космический аппарат Pioneer

Подобные двигатели подходят для вывода ракет на околоземную орбиту, но, чтобы её разогнать хотя бы до четверти скорости света, понадобится невероятное количество топлива (расчёты показывают, что нужно 103200 грамм топлива, при том, что масса нашей Галактики не более 1056 грамма). Очевидно, что для достижения ближайших планет, а тем более звёзд, нам необходимы достаточно большие скорости, обеспечить которые жидкотопливные ракеты не в состоянии.

​Газофазный ядерный двигатель

Дальний космос — дело совсем другое. Взять хотя бы Марс, «обжитый» фантастами вдоль и поперёк: он хорошо изучен и научно перспективен, а самое главное — близок как никто другой. Дело — за «космическим автобусом», который сможет доставить туда экипаж за разумное время, то есть, как можно быстрее. Но с межпланетным транспортом есть проблемы. Его сложно разогнать до нужной скорости, сохранив при этом приемлемые размеры и потратив разумное количество топлива.


RS-25 (Rocket System 25) — жидкостный ракетный двигатель компании Рокетдайн, США. Применялся на планере космической транспортной системы «Space Shuttle», на каждом из которых было установлено три таких двигателя. Более известен как двигатель SSME (англ. Space Shuttle Main Engine — главный двигатель космического челнока). Основными компонентами топлива являются жидкий кислород (окислитель) и водород (горючее). RS-25 использует схему закрытого цикла (с дожиганием генераторного газа).

Решением может быть «мирный атом», толкающий космические корабли. О создании лёгкого и компактного устройства, способного вывести на орбиту хотя бы самого себя, инженеры задумались ещё в конце 50‑х годов прошлого века. Главное отличие ядерных двигателей от ракет с двигателями внутреннего сгорания в том, что кинетическая энергия получается не за счёт сгорания топлива, а за счёт тепловой энергии распада радио­активных элементов. Давайте сравним эти подходы.

Из жидкостных двигателей выходит раскалённый «коктейль» выхлопных газов (закон сохранения импульса), образующихся при реакции топлива и окислителя (закон сохранения энергии). В большинстве случаев это комбинация кислорода и водорода (результат горения водорода — обычная вода). H2O обладает гораздо большей молярной массой, чем водород или гелий, поэтому её труднее разогнать, удельный импульс для подобного двигателя 4 500 м/с.

Наземные испытания NASA новой системы запуска космических ракет, 2016 год (штат Юта, США). Эти двигатели будут установлены на космический корабль Orion, на котором планируется миссия на Марс.

В ядерных двигателях предлагается использовать только водород и разгонять (разогревать) его за счёт энергии ядерного распада. Тем самым идёт экономия на окислителе (кислороде), что уже замечательно, но не всё. Так как у водорода относительно малая удельная масса, нам проще его разогнать до более высоких скоростей. Конечно, можно использовать и другие тепловосприимчивые газы (гелий, аргон, аммиак и метан), но все они не менее чем в два раза проигрывают водороду в самом главном — достижимом удельном импульсе (более 8 км/c).

Так стоит ли его терять? Выигрыш настолько велик, что инженеров не останавливает ни сложность конструкции и управления реактором, ни его большой вес, ни даже радиационная опасность. Тем более никто и не собирается стартовать с поверхности Земли — сборка таких кораблей будет вестись на орбите.

​«Летающий» реактор

Как работает ядерный двигатель? Реак­тор в космическом двигателе намного меньше и компактнее своих наземных аналогов, но все основные компоненты и механизмы управления принципиально те же. Реактор выступает в роли нагревателя, в который подаётся жидкий водород. Температуры в активной зоне достигают (и могут превышать) 3000 градусов. Затем разогретый газ выпускают через сопло.

Однако такие реакторы испускают вредные радиационные излучения. Для защиты экипажа и многочисленного электронного оборудования от радиации нужны основательные меры. Поэтому проекты межпланетных кораблей с атомным движком часто напоминают зонтик: двигатель располагается в экранированном отдельном блоке, соединённом с основным модулем длинной фермой или трубой.

«Камерой сгорания» ядерного двигателя служит активная зона реактора, в которой подаваемый под большим давлением водород нагревается до 3000 и более градусов. Этот предел определяется только жаропрочностью материалов реактора и свойствами топлива, хотя повышение температуры увеличивает удельный импульс.

Тепловыделяющие элементы — это жаропрочные ребристые (для повышения площади теплоотдачи) цилиндры-«стаканы», заполненные урановыми таблетками. Они «омываются» потоком газа, играющего роль и рабочего тела, и охладителя реактора. Вся конструкция изолирована бериллиевыми экранами-отражателями, не выпускающими опасное радиационное излучение наружу. Для управления выделением тепла рядом с экранами расположены специальные поворотные барабаны

Существует ряд перспективных конструкций ядерных ракетных двигателей, реализация которых ждёт своего часа. Ведь в основном они будут применяться в межпланетных путешествиях, которые, судя по всему, уже не за горами.

Проекты ядерных двигателей

Эти проекты были заморожены по разным причинам — недостаток денег, сложность конструкции или даже необходимость сборки и установки в открытом космосе.

«ОРИОН» (США, 1950–1960)

Проект пилотируемого ядерно-импульсного космического корабля («взрыволёт») для исследования межпланетного и межзвёздного ­пространства.

Принцип работы. Из двигателя корабля, в направлении противоположном полёту, выбрасывается ядерный заряд небольшого эквивалента и подрывается на сравнительно малой дистанции от корабля (до 100 м). Ударная сила отражается от массивной отражающей плиты в хвосте корабля, «толкая» его вперёд.

«ПРОМЕТЕЙ» (США, 2002–2005)

Проект космического агентства NASA по разработке ядерного двигателя для космических аппаратов.

Принцип работы. Двигатель космического корабля должен был состоять из ионизированных частиц, создающих тягу, и компактного ядерного реактора, обеспечивающего установку энергией. Ионный двигатель создаёт тягу порядка 60 грамм, но сможет работать постоянно. В конечном счёте, корабль постепенно сможет набрать огромную скорость — 50 км/сек, затратив минимальное количество энергии.

«ПЛУТОН» (США, 1957–1964)

Проект по разработке ядерного прямоточного воздушно-реактивного двигателя.

Принцип работы. Воздух через переднюю часть транспортного средства попадает в ядерный реактор, в котором нагревается. Горячий воздух расширяется, приобретает большую скорость и высвобождается через сопло, обеспечивая необходимую тягу.

NERVA (США, 1952–1972)

(англ. Nuclear Engine for Rocket Vehicle Application) — совместная программа Комиссии по атомной энергии США и NASA по созданию ядерного ракетного двигателя.

Принцип работы. Жидкий гидрогель подаётся в специальный отсек, в котором происходит его нагревание ядерным реактором. Горячий газ расширяется и высвобождается в сопле, создавая тягу.

Безопасный способ использования ядерной энергии в космосе изобретен еще в СССР, и сейчас ведутся работы по созданию на его основе ядерной установки, сообщил генеральный директор Государственного научного центра РФ «Исследовательский центр имени Келдыша», академик Анатолий Коротеев.

«Сейчас институт активно в этом направлении работает в большой кооперации предприятий Роскосмоса и Росатома. И я надеюсь, что в установленные сроки мы здесь получим положительный эффект», – заявил А.Коротеев на ежегодных «Королевских чтениях» в МГТУ имени Баумана во вторник.

По его словам, «Центр имени Келдыша» изобрел схему безопасного использования ядерной энергии в космическом пространстве, которая позволяет обойтись без выбросов и работает по замкнутой схеме, что делает установку безопасной даже в случае отказа и падения ее на Землю.

«Эта схема в значительной степени снижает риск использования ядерной энергии, особенно с учетом того, что одним из основополагающих моментов является эксплуатация этой системы на орбитах выше 800-1000 км. Тогда, в случае отказа, время «высвечивания» такое, что оно делает безопасным возвращение через большой промежуток времени этих элементов на Землю», — уточнил ученый.

А.Коротеев сообщил, что ранее в СССР уже применялись космические аппараты, работающие на ядерной энергии, но они были потенциально опасными для Земли, и впоследствии от них пришлось отказаться. «СССР использовал ядерную энергию в космосе. В космосе было 34 космических аппарата с ядерной энергией, из которых 32 советских и два американских», — напомнил академик.

По его словам, разрабатываемая в России ядерная установка будет облегчена за счет использования бескаркасной системы охлаждения, при которой охладитель ядерного реактора будет циркулировать непосредственно в космическом пространстве без системы трубопроводов.

А ведь еще еще в начале 1960-х годов конструкторы рассматривали ядерные ракетные двигатели как единственную реальную альтернативу для путешествия к другим планетам Солнечной системы. Давайте узнаем историю этого вопроса.

Соревнование между СССР и США, в том числе и в космосе, шло в это время полным ходом, инженеры и ученые вступили в гонку по созданию ЯРД, военные тоже поддержали вначале проект ядерного ракетного двигателя. Поначалу задача казалась очень простой - нужно только сделать реактор, рассчитанный на охлаждение водородом, а не водой, пристроить к нему сопло, и - вперед, к Марсу! Американцы собирались на Марс лет через десять после Луны и не могли даже помыслить о том, что астронавты когда-нибудь его достигнут без ядерных двигателей.

Американцы очень быстро построили первый реактор-прототип и уже в июле 1959 года провели его испытания (они назывались KIWI-A). Эти испытания всего лишь показали, что реактор можно использовать для нагрева водорода. Конструкция реактора - с незащищенным топливом из оксида урана - не годилась для высоких температур, и водород нагревался всего до полутора тысяч градусов.

По мере накопления опыта конструкция реакторов для ядерного ракетного двигателя - ЯРД - усложнялась. Оксид урана был заменен на более термостойкий карбид, вдобавок его стали покрывать карбидом ниобия, но при попытках достигнуть проектной температуры реактор начинал разрушаться. Больше того, даже при отсутствии макроскопических разрушений происходила диффузия уранового топлива в охлаждающий водород, и потеря массы достигала 20% за пять часов работы реактора. Так и не был найден материал, способный работать при 2700-3000 0 С и противостоять разрушению горячим водородом.

Поэтому американцы приняли решение пожертвовать эффективностью и в проект летного двигателя заложили удельный импульс (тяга в килограммах силы, достигаемая при ежесекундном выбросе одного килограмма массы рабочего тела; единица измерений - секунда). 860 секунд. Это вдвое превышало соответствующий показатель кислород-водородных двигателей того времени. Но когда у американцев сталочто-то получаться, интерес к пилотируемым полетам уже упал, программа «Аполлон» была свернута, а в 1973 году окончательно закрыли проект «NERVA» (так назвали двигатель для пилотируемой экспедиции на Марс). Выиграв лунную гонку, американцы не захотели устраивать марсианскую.

Но уроки, извлеченные из десятка построенных реакторов и нескольких десятков проведенных испытаний, состояли в том, что американские инженеры слишком увлеклись натурными ядерными испытаниями, вместо того чтобы отрабатывать ключевые элементы без вовлечения ядерной технологии там, где этого можно избежать. А где нельзя - использовать стенды меньшего размера. Американцы почти все реакторы «гоняли» на полной мощности, но не смогли добраться до проектной температуры водорода - реактор начинал разрушаться раньше. Всего с 1955 по 1972 годы на программу ядерных ракетных двигателей было потрачено $1,4 млрд. - примерно 5% стоимости лунной программы.

Также в США был придуман проект «Орион», соединявший в себе оба варианта ЯРД (реактивный и импульсный). Сделано это было следующим образом: из хвостовой части корабля выбрасывались небольшие ядерные заряды мощностью около 100 тонн в тротиловом эквиваленте. Вслед за ними отстреливались металлические диски. На расстоянии от корабля производился подрыв заряда, диск испарялся, и вещество разлеталось в разные стороны. Часть его попадала в усиленную хвостовую часть корабля и двигала его вперед. Небольшую прибавку к тяге должно было давать испарение плиты, принимающей на себя удары. Удельная стоимость такого полета должна была быть всего 150 тогдашних долларов на килограмм полезной нагрузки.

Дошло даже до испытаний: опыт показал, что движение при помощи последовательных импульсов возможно, как и создание кормовой плиты достаточной прочности. Но проект «Орион» был закрыт в 1965 году как неперспективный. Тем не менее, это пока единственная существующая концепция, которая может позволить осуществлять экспедиции хотя бы по Солнечной системе.

В первой половине 1960-х годов советские инженеры рассматривали экспедицию на Марс как логичное продолжение разворачиваемой в то время программы полета человека на Луну. На волне воодушевления, вызванного приоритетом СССР в космосе, даже такие чрезвычайно сложные проблемы оценивались с повышенным оптимизмом.

Одной из самых главных проблем была (и остается по сей день) проблема энергодвигательного обеспечения. Было ясно, что ЖРД, даже перспективные кислородно-водородные, если и могут в принципе обеспечить пилотируемый полет на Марс, то только при огромных стартовых массах межпланетного комплекса, с большим количеством стыковок отдельных блоков на монтажной околоземной орбите.

В поисках оптимальных решений ученые и инженеры обратились к ядерной энергии, постепенно присматриваясь к этой проблеме.

В СССР исследования по проблемам использования энергии ядра в ракетно-космической технике начались во второй половине 50-х годов, еще до запуска первых ИСЗ. В нескольких научно-исследовательских институтах возникли небольшие группы энтузиастов, поставивших целью создание ракетных и космических ядерных двигателей и энергоустановок.

Конструкторы ОКБ-11 С.П.Королева совместно со специалистами НИИ-12 под руководством В.Я.Лихушина рассматривали несколько вариантов космических и боевых (!) ракет, оснащенных ядерными ракетными двигателями (ЯРД). В качестве рабочего тела оценивались вода и сжиженные газы – водород, аммиак и метан.

Перспектива была многообещающей; постепенно работы нашли понимание и финансовое обеспечение в правительстве СССР.

Уже самый первый анализ показал, что среди множества возможных схем космических ядерных энергодвигательных установок (ЯЭДУ) наибольшие перспективы имеют три:

  • с твердофазным ядерным реактором;
  • с газофазным ядерным реактором;
  • электроядерные ракетные ЭДУ.

Схемы отличались принципиально; по каждой из них наметили несколько вариантов для развертывания теоретических и экспериментальных работ.

Наиболее близким к реализации представлялся твердофазный ЯРД. Стимулом к развертыванию работ в этом направлении послужили аналогичные разработки, проводившиеся в США с 1955 г. по программе ROVER, а также перспективы (как тогда казалось) создания отечественного межконтинентального пилотируемого самолета-бомбардировщика с ЯЭДУ.

Твердофазный ЯРД работает как прямоточный двигатель. Жидкий водород поступает в сопловую часть, охлаждает корпус реактора, тепловыделяющие сборки (ТВС), замедлитель, а далее разворачивается и попадает внутрь ТВС, где нагревается до 3000 К и выбрасывается в сопло, ускоряясь до высоких скоростей.

Принципы работы ЯРД не вызывали сомнений. Однако конструктивное выполнение (и характеристики) его во многом зависели от «сердца» двигателя – ядерного реактора и определялись, прежде всего, его «начинкой» – активной зоной.

Разработчики первых американских (и советских) ЯРД стояли за гомогенный реактор с графитовой активной зоной. Несколько особняком шли работы поисковой группы по новым видам высокотемпературного топлива, созданной в 1958 г. в лаборатории №21 (руководитель – Г.А.Меерсон) НИИ-93 (директор – А.А.Бочвар). Под влиянием развернутых в то время работ по реактору для самолета (соты из оксида бериллия) в группе предприняли попытки (опять же поисковые) получить материалы на основе карбида кремния и циркония, стойкие к окислению.

По воспоминаниям Р.Б. Котельникова, сотрудника НИИ-9, весной 1958 г. у руководителя лаборатории №21 состоялась встреча с представителем НИИ-1 В.Н.Богиным. Он рассказал, что в качестве основного материала для тепловыделяющих элементов (твэлов) реактора в их институте (кстати, в то время головном в ракетной отрасли; начальник института В.Я.Лихушин, научный руководитель М.В.Келдыш, начальник лаборатории В.М.Иевлев) применяют графит. В частности, уже научились наносить на образцы покрытия для защиты от водорода. Со стороны НИИ-9 было предложено рассмотреть возможность применения карбидов UC-ZrC как основы твэлов.

Спустя короткое время появился еще один заказчик на твэлы – ОКБ М.М.Бондарюка, которое идейно конкурировало с НИИ-1. Если последний стоял за многоканальную цельноблочную конструкцию, то ОКБ М.М.Бондарюка взяло курс на разборный пластинчатый вариант, ориентируясь на легкость механообработки графита и не смущаясь сложностью деталей – пластин миллиметровой толщины с такими же ребрышками. Карбиды обрабатываются гораздо сложнее; в то время из них невозможно было изготовить такие детали, как многоканальные блоки и пластины. Стала ясна необходимость создания какой-то иной конструкции, соответствующей специфике карбидов.

В конце 1959 г. – начале 1960 г. было найдено решающее условие для твэлов ЯРД – стержневой тип сердечника, удовлетворяющий заказчиков – НИИ Лихушина и ОКБ Бондарюка. Как основную для них обосновали схему гетерогенного реактора на тепловых нейтронах; ее основные достоинства (по сравнению с альтернативным гомогенным графитовым реактором) таковы:

  • возможно использовать низкотемпературный водородосодержащий замедлитель, что позволяет создать ЯРД с высоким массовым совершенством;
  • возможно разработать малоразмерный прототип ЯРД тягой порядка 30…50 кН с высокой степенью преемственности для двигателей и ЯЭДУ следующего поколения;
  • возможно широко применять в твэлах и других деталях конструкции реактора тугоплавкие карбиды, что позволяет максимально увеличить температуру нагрева рабочего тела и обеспечить повышенный удельный импульс;
  • возможно поэлементно автономно отработать основные узлы и системы ЯРД (ЯЭДУ), такие как тепловыделяющие сборки, замедлитель, отражатель, турбонасосный агрегат (ТНА), систему управления, сопло и др.; это позволяет проводить отработку параллельно, сокращая объем дорогостоящих комплексных испытаний энергоустановки в целом.

Примерно в 1962–1963 гг. работы по проблеме ЯРД возглавил НИИ-1, имеющий мощную экспериментальную базу и прекрасные кадры. Им не хватало только технологии по урану, а также ядерщиков. С привлечением НИИ-9, а потом и ФЭИ сложилась кооперация, которая взяла за идеологию создание минимального по тяге (около 3.6 тс), но «настоящего» летнего двигателя с «прямоточным» реактором ИР-100 (испытательный или исследовательский, мощностью 100 МВт, главный конструктор – Ю.А.Трескин). Поддержанный постановлениями правительства, НИИ-1 строил электродуговые стенды, неизменно поражавшие воображение – десятки баллонов по 6–8 м высоты, громадные горизонтальные камеры мощностью свыше 80 кВт, броневые стекла в боксах. Участников совещаний вдохновляли красочные плакаты со схемами полетов к Луне, Марсу и т.д. Предполагалось, что в процессе создания и испытаний ЯРД будут решены вопросы конструкторского, технологического, физического плана.

По мнению Р.Котельникова, дело, к сожалению, осложнялось не очень ясной позицией ракетчиков. Министерство общего машиностроения (МОМ) с большими трудностями финансировало программу испытаний и строительство стендовой базы. Казалось, что МОМ не имеет желания или возможностей продвигать программу ЯРД.

К концу 1960-х годов поддержка конкурентов НИИ-1 – ИАЭ, ПНИТИ и НИИ-8 – была значительно серьезнее. Министерство среднего машиностроения («атомщики») активно поддерживало их разработку; «петлевой» реактор ИВГ (с активной зоной и сборками центрального канала стержневого типа разработки НИИ-9) в итоге к началу 70-х годов вышел на первый план; в нем начались испытания ТВС.

Сейчас, спустя 30 лет, представляется, что линия ИАЭ была более правильной: сначала – надежная «земная» петля – отработка твэлов и сборок, а потом создание летного ЯРД нужной мощности. Но тогда казалось, что можно очень быстро сделать настоящий двигатель, пусть маленький… Однако, поскольку жизнь показала, что объективной (или даже субъективной) потребности в таком двигателе не было (к этому можно еще прибавить, что серьезность негативных моментов этого направления, например международных соглашений о ядерных устройствах в космосе, поначалу сильно недооценивалась), то соответственно более правильной и продуктивной оказалась фундаментальная программа, цели которой не были узкими и конкретными.

1 июля 1965 г. был рассмотрен эскизный проект реактора ИР-20-100. Кульминацией стал выпуск техпроекта тепловыделяющих сборок ИР-100 (1967 г.), состоящих из 100 стержней (UC-ZrC-NbC и UC-ZrC-C для входных секций и UC-ZrC-NbC для выходной). НИИ-9 был готов к выпуску крупной партии стержневых элементов будущей активной зоны ИР-100. Проект был весьма прогрессивен: спустя примерно 10 лет практически без существенных изменений он был использован в зоне аппарата 11Б91, и даже сейчас все основные решения сохраняются в сборках подобных реакторов другого назначения, уже совсем с другой степенью расчетного и экспериментального обоснования.

«Ракетная» часть первого отечественного ядерного РД-0410 была разработана в воронежском Конструкторском бюро химической автоматики (КБХА), «реакторная» (нейтронный реактор и вопросы радиационной безопасности) – Институтом физики и энергии (Обнинск) и Курчатовским институтом атомной энергии.

КБХА известно своими работами в области ЖРД для баллистических ракет, КА и РН. Здесь было разработано около 60 образцов, 30 из которых доведено до серийного производства. В КБХА к 1986 г. был создан и самый мощный в стране однокамерный кислородно-водородный двигатель РД-0120 тягой 200 тс, использованный в качестве маршевого на второй ступени комплекса «Энергия-Буран». Ядерный РД-0410 создавался совместно со многими оборонными предприятиями, КБ и НИИ.

Согласно принятой концепции, жидкие водород и гексан (ингибирующая присадка, снижающая наводораживание карбидов и увеличивающая ресурс твэлов) подавались с помощью ТНА в гетерогенный реактор на тепловых нейтронах с ТВС, окруженными замедлителем из гидрида циркония. Их оболочки охлаждались водородом. Отражатель имел приводы для поворота поглотительных элементов (цилиндров из карбида бора). ТНА включал трехступенчатый центробежный насос и одноступенчатую осевую турбину.

За пять лет, с 1966 по 1971 гг., были созданы основы технологии реакторов-двигателей, а еще через несколько лет была введена в действие мощная экспериментальная база под названием «экспедиция №10», впоследствии опытная экспедиция НПО «Луч» на Семипалатинском ядерном полигоне.
Особые трудности встретились при испытаниях. Обычные стенды для запуска полномасштабного ЯРД использовать было невозможно из-за радиации. Испытания реактора решили проводить на атомном полигоне в Семипалатинске, а «ракетной части» – в НИИхиммаш (Загорск, ныне Сергиев Посад).

Для изучения внутрикамерных процессов было выполнено более 250 испытаний на 30 «холодных двигателях» (без реактора). В качестве модельного нагревательного элемента использовалась камера сгорания кислородно-водородного ЖРД 11Д56 разработки КБхиммаш (главный конструктор – А.М.Исаев). Максимальное время наработки составило 13 тыс сек при объявленном ресурсе в 3600 сек.

Для испытаний реактора на Семипалатинском полигоне были построены две специальные шахты с подземными служебными помещениями. Одна из шахт соединялась с подземным резервуаром для сжатого газообразного водорода. От использования жидкого водорода отказались из финансовых соображений.

В 1976 г. был проведен первый энергетический пуск реактора ИВГ-1. Параллельно в ОЭ создавался стенд для испытания «двигательного» варианта реактора ИР-100, и через несколько лет были проведены его испытания на разной мощности (один из ИР-100 впоследствии был переоборудован в материаловедческий исследовательский реактор малой мощности, который работает до сих пор).

Перед экспериментальным запуском реактор опускался в шахту с помощью установленного на поверхности козлового крана. После запуска реактора водород поступал снизу в «котел», раскалялся до 3000 К и огненной струей вырывался из шахты наружу. Несмотря на незначительную радиоактивность истекающих газов, в течение суток находиться снаружи в радиусе полутора километров от места испытаний не разрешалось. К самой же шахте нельзя было подходить в течение месяца. Полуторакилометровый подземный тоннель вел из безопасной зоны сначала к одному бункеру, а из него – к другому, находящемуся возле шахт. По этим своеобразным «коридорам» и передвигались специалисты.

Иевлев Виталий Михайлович

Результаты экспериментов, проведенных с реактором в 1978– 1981 гг., подтвердили правильность конструктивных решений. В принципе ЯРД был создан. Оставалось соединить две части и провести комплексные испытания.

Примерно в 1985 году РД-0410 (по другой системе обозначений 11Б91) мог бы совершить своей первый космический полет. Но для этого нужно было разработать разгонный блок на его основе. К сожалению, эта работа не была заказана ни одному космическому КБ, и тому есть множество причин. Главная из них - так называемая Перестройка. Необдуманные шаги привели к тому, что вся космическая отрасль мгновенно оказалась «в опале» и в 1988 году работы по ЯРД в СССР (тогда еще существовал СССР) были прекращены. Произошло это не из-за технических проблем, а по сиюминутным идеологическим соображениям.А в 1990-м году умер идейный вдохновитель программ ЯРД в СССР Виталий Михайлович Иевлев…

Каких же основных успехов достигли разработчики, создавая ЯРД схемы «А»?

Проведено более полутора десятков натурных испытаний на реакторе ИВГ-1, и получены следующие результаты: максимальная температура водорода – 3100 К, удельный импульс – 925 сек, удельное тепловыделение до 10 МВт/л, общий ресурс более 4000 сек при последовательных 10 включениях реактора. Эти итоги значительно превосходят американские достижения на графитовых зонах.

Следует заметить, что за все время испытаний ЯРД, несмотря на открытый выхлоп, выход радиоактивных осколков деления не превышал допустимых норм ни на полигоне, ни за его пределами и не был зарегистрирован на территории сопредельных государств.

Важнейшим результатом работы явилось создание отечественной технологии таких реакторов, получение новых тугоплавких материалов, а факт создания реактора-двигателя породил ряд новых проектов и идей.

Хотя дальнейшее развитие таких ЯРД было приостановлено, полученные достижения являются уникальными не только в нашей стране, но и в мире. Это неоднократно подтверждено в последние годы на международных симпозиумах по космической энергетике, а также на встречах отечественных и американских специалистов (на последних было признано, что реактор-стенд ИВГ – единственный на сегодня в мире работоспособный испытательный аппарат, который может сыграть важную роль в экспериментальной отработке ТВС и атомных ЭДУ).

источники
http://newsreaders.ru
http://marsiada.ru
http://vpk-news.ru/news/14241

Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия - 03-03-2018

Валерий Лебедев (обзор)

    • В истории уже существовали разработки крылатых ракет с прямоточным ядерным воздушным двигателем: это ракета SLAM (она же Плутон)в США с реактором TORY-II (1959 г.), концепт Avro Z-59 в Великобритании, проработки в СССР.
    • Коснемся принципа работы ракеты с атомным реактором.Говорим только о прямоточном ядерном двигателе, который как раз и имелся в виду в выступлении Путина в его рассказе о крылатой ракете с неограниченной дальностью полета и полной неуязвимостью.Атмосферный воздух в этой ракете нагревается ядерной сборкой до высоких температур и с большой скоростью выбрасывается из сопла сзади. Испытывался в России (в 60-х) и у американцев (с 1959 г.). Имеет два существенных недостатка: 1. Смердит как та же ядреная бомба, так что за время полета засрёт всё на траектории. 2. В тепловом диапазоне смердит так, что из космоса его увидит даже северокорейский спутник на радиолампах. Соответственно и грохнуть такую летающую керосинку можно вполне себе уверенно.
      Так что показанные в Манеже мультики ввергли в недоумение, перерастающее в беспокойство по поводу здоровья (умственного) режиссера этой фигни.
      В советское время такие картинки (плакатики и прочие утехи для генералов) называли "чебурашками".

      В общем это обычная схема прямоточки, осесимметричная с обтекаемым центральным телом и обечайкой. Форма центрального тела такова, чтобы за счет скачков уплотнения на входе воздух сжимался (рабочий цикл запускается на скорости 1 М и выше, до которой разгон за счет стартового ускорителя на обычном твердом топливе);
      - внутри центрального тела ядерный источник тепла с монолитной АЗ;
      - центральное тело скреплено с оболочкой 12-16 пластинчатыми радиаторами, куда от АЗ тепловыми трубами отводится тепло. Радиаторы находятся в зоне расширения перед соплом;
      - материал радиаторов и центрального тела, например, ВНДС-1, сохраняющий конструктивную прочность до 3500 К в пределе;
      - нагреваем его для верности до 3250 К. Воздух, обтекая радиаторы, нагревается и охлаждает их. Далее он проходит через сопло, создавая тягу;
      - для охлаждения обечайки до приемлемых температур -- вокруг нее строим эжектор, который заодно увеличивает тягу на 30-50%.

      Капсулированный монолитный блок ЯЭУ можно либо устанавливать в корпус перед пуском, либо держать до пуска в докритическом состоянии, а ядерную реакцию запускать при необходимости. Как конкретно -- не знаю, это инженерная задача (а значит, поддающаяся решению). Так это явно оружие первого удара, это к бабке не ходи.
      Капсулированный блок ЯЭУ можно сделать таким, чтобы он гарантированно не разрушался при ударе в случае аварии. Да, он получится тяжелым -- но он получится тяжелым в любом случае.

      Для выхода на гиперзвук понадобиться отводить совершенно неприличную плотность энергии в единицу времени на рабочее тело. С вероятностью 9/10 существующие материалы на длинных периодах времени (часы/дни/недели) такое не потянут, скорость деградации будет - бешеная.

      Да и вообще, среда там будет агрессивная. Защита от излучения - тяжелая, иначе все датчики/электронику можно на свалку сразу (желающие могут вспомнить Фукусиму и вопросы: "а почему роботам убирать не поручили?").

      И т.д... "Светиться" подобный вундервафль будет знатно. Как передавать на него управляющие команды (если там все напрочь экранировать) - непонятно.

      Коснемся достоверно созданных ракет с ядерной энергетической установкой - американской разработки - ракеты SLAM с реактором TORY-II (1959).

      Вот этот двигатель с реактором:

      Концепт SLAM был трехмаховым низколетящей ракетой внушительных габаритов и массы (27 тонн, 20+ тонн после сброса стартовых ускорителей). Страшно затратный низколетящий сверхзвук позволял по максимуму использовать наличие практически не ограниченного источника энергии на борту, кроме того, важной чертой ядерного воздушного реактивного двигателя является улучшения кпд работы (термодинамического цикла) при росте скорости, т.е. та же идея, но на скоростях в 1000 км/ч имела бы гораздо более тяжелый и габаритный двигатель. Наконец, 3М на высоте в сотню метров в 1965 году означало неуязвимость для ПВО.

      Двигатель TORY-IIC. Твэлы в активно зоне представляю собой шестигранные полые трубки из UO2, покрытые защитной керамической оболочкой, собранные в инкалоевых ТВС.

      Получается, что раньше концепция Крылатой Ракеты с ЯЭУ "завязывалась" на высокой скорости, где преимущества концепции были сильными, а конкуренты с углеводородным топливом ослабевали.

    • Ролик о старой американской ракете SLAM

  • Показанная же на презентации Путина ракета околозвуковая или слабосверхзвуковая (если, конечно, верить, что на видео именно она). Но при этом габарит реактора уменьшился значительно по сравнению с TORY-II от ракеты SLAM, где он составлял аж 2 метра включая радиальный отражатель нейтронов из графита.
    Схема ракеты SLAM. Все приводы пневматические, аппаратура управления находится в капсуле, ослабляющей излучение.

    Можно ли вообще уложить реактор в диаметр 0,4-0,6 метра? Начнем с принципиально минимального реактора - болванки из Pu239. Хороший пример реализации такой концепции - космический реактор Kilopower, где, правда, используется U235. Диаметр активной зоны реактора всего 11 сантиметров! Если перейти на плутоний 239 размеры АЗ упадут еще в 1,5-2 раза.
    Теперь от минимального размера мы начнем шагать к реальном ядерному воздушному реактивному двигателю, вспоминая про сложности. Самым первым к размеру реактора добавляется размер отражателя - в частности в Kilopower BeO утраивает размеры. Во-вторых мы не можем использовать болванку U или Pu - они элементарно сгорят в потоке воздуха буквально через минуту. Нужна оболочка, например из инкалоя, который противостоит мгновенному окислению до 1000 С или других никелевых сплавов с возможным покрытием керамикой. Внесение большого количества материала оболочек в АЗ сразу в несколько раз увеличивает необходимое количество ядерного топлива - ведь "непродуктивное" поглощение нейтронов в АЗ теперь резко выросло!
    Более того, металлическая форма U или Pu теперь не годится - эти материалы и сами не тугоплавкие (плутоний вообще плавится при 634 С), так еще и взаимодействуют с материалом металлических оболочек. Переводим топливо в классическую форму UO2 или PuO2 - получаем еще одно разбавление материала в АЗ, теперь уже кислородом.

    Наконец, вспоминаем предназначение реактора. Нам нужно прокачивать через него много воздуха, которому мы будем отдавать тепло. примерно 2/3 пространства займут "воздушные трубки". В итоге минимальный диаметр АЗ вырастает до 40-50 см (для урана), а диаметр реактора с 10-сантиметровым бериллиевым отражателем до 60-70 см.

    Воздушный ядерный реактивный двигатель можно впихнуть в ракету диаметром около метра, что впрочем, все же не кардинально больше озвученных 0,6-0,74 м, но все же настораживает.

    Так или иначе, ЯЭУ будет иметь мощность ~несколько мегаватт, питаемые ~10^16 распадов в секунду. Это означает, что сам реактор будет создавать радиационное поле в несколько десятков тысяч рентген у поверхности, и до тысячи рентген вдоль всей ракеты. Даже установка нескольких сот кг секторной защиты не сильно снизит эти уровни, т.к. нейтронны и гамма-кванты будут отражаться от воздуха и "обходить защиту". За несколько часов такой реактор наработает ~10^21-10^22 атомов продуктов деления c активностью в несколько (несколько десятков) петабеккерелей который и после остановки создадут фон в несколько тысяч рентген возле реактора. Конструкция ракеты будет активирована до примерно 10^14 Бк, хотя изотопы будут в основном бета-излучателями и опасны только тормозным рентгеном. Фон от самой конструкции может достигать десятки рентген на расстоянии 10 метров от корпуса ракеты.

    Все эти сложности дают представление, что и разработка и испытания подобной ракеты - задача на грани возможного. Необходимо создать целый набор радиационно-стойкого навигационного и управляющего оборудования, испытать это все довольно комплексным образом (радиация, температура, вибрации - и все это на статистику). Летные испытания с работающим реактором в любой момент могут превратиться в радиационную катастрофу с выбросом от сотен террабеккерелей до единиц петабеккерелей. Даже без катастрофических ситуаций весьма вероятная разгерметизация отдельных твэлов и выброс радионуклидов.
    Из за всех этих сложностей американцы отказались от ракеты с ядерным двигателем SLAM в 1964 г.

    Конечно, в России до сих пор есть Новоземельский полигон на котором можно проводить такие испытания, однако это будет противоречить духу договора о запрещении испытаний ядерного оружия в трех средах (запрещение вводилось с целью недопущения планомерного загрязнения атмосферы и океана радинуклидами).

    Наконец, интересно, кто в РФ мог бы заниматься разработкой подобного реактора. Традиционно изначально высокотемпературными реакторами занимался Курчатовский институт (общее проектирование и расчеты), Обнинский ФЭИ (экспериментальная отработка и топливо), НИИ "Луч" в Подольске (топливо и технологии материалов). Позже к проектированию подобных машин подключается коллектив НИКИЭТ (например реакторы ИГР и ИВГ - прообразы активной зоны ядерного ракетного двигателя РД-0410). Сегодня НИКИЭТ обладает коллективом конструкторов, которые выполняют работы по проектированию реакторов (высокотемпературный газоохлаждаемый РУГК , быстрые реакторы МБИР , ), а ФЭИ и "Луч" продолжают заниматься сопутствующими расчетами и технологиями соотвественно. Курчатовский институт же в последние десятилетия больше перешел к теории ядерных реакторов.

    Резюмируя, можно сказать, что создание крылатой ракеты с воздушным реактивным двигателеям с ЯЭУ является в целом выполнимой задачей, но одновременно крайне дорогой и сложной, требующей значимой мобилизации людских и финансовых ресурсов, как мне кажется в большей степени, чем все остальные озвученные проекты ("Сармат", "Кинжал", "Статус-6", "Авангард"). Очень странно, что эта мобилизация не оставила ни малейшего следа. А главное, совершенно непонятно, в чем польза от получения подобных образцов вооружений (на фоне имеющихся носителей), и как они могут перевесить многочисленные минусы - вопросы радиционной безопасности, дороговизны, несовместимости с договорами о сокращении стратегических вооружений.

    Малогабаритный реактор разрабатывается с 2010 года, об этом докладывал Кириенко в Госдуме. Предполагалось, что его установят на космический аппарат с ЭРД для полетов к Луне и Марсу и испытают на орбите в этом году.
    Очевидно, что для крылатых ракет и подводных лодок используется аналогичное устройство.

    Да, ставить атомный движок можно, и успешные 5 минутные испытания 500 мегаватного движка, сделанные в штатах много лет назад для крылатой ракеты с рам джетом для скорости 3 маха это, в общем-то, это подтвердили (проект Плуто). Стендовые испытания, понятно (движок "обдували" подготовленным воздухом нужного давления/температуры). Только вот зачем? Существующих (и проектируемых) балличтических ракет достаточно для ядерного паритета. Зачем создавать потенциально более опасное (для "своих") в использовании (и тестировании) оружие? Даже в проекте Плуто подразумевалось, что над своей территорией такая ракета летит на значительной высоте, снижаясь на под-радарные высоты только близко к территории противника. Не очень хорошо находиться рядом с незащищенным 500 мегаватным воздушно охлаждаемым урановым реактором про температуре материалов более 1300 цельсиев. Правда, упомянутые ракеты (если они действительно разрабатываются) будут меньшей мощности чем Плутон (Slam).
    Ролик-анимация 2007 г., выданный в презентации Путина за показ новейшей крылатой ракеты с атомной энергетической установкой.

    Возможно, все это подготовка к северо корейскому варианту шантажа. Мы перестанем разрабатывать наше опасное оружие - а вы с нас снимаете санкции.
    Что за неделя - китайский босс пробивает пожизненное правление, российский грозит всему миру.

© Оксана Викторова/Коллаж/Ridus

Заявление, сделанное Владимиром Путиным в ходе своего послания Федеральному собранию, о наличии в России крылатой ракеты, приводимой в движение двигателем на ядерной тяге, вызвало бурный ажиотаж в обществе и СМИ. В то же время о том, что представляет собой такой двигатель, и о возможностях его использования до последнего времени было известно достаточно мало, как широкой общественности, так и специалистам.

«Ридус» попытался разобраться, о каком техническом устройстве мог вести речь президент и в чем состоит его уникальность.

Учитывая, что презентация в Манеже делалась не на аудиторию технических специалистов, а для «общей» публики, ее авторы могли допустить определенную подмену понятий, не исключает заместитель директора Института ядерной физики и технологий НИЯУ МИФИ Георгий Тихомиров.

«То, что говорил и показывал президент, специалисты называют компактными силовыми установками, эксперименты с которыми проводились изначально в авиации, а затем при освоении дальнего космоса. Это были попытки решить неразрешимую проблему достаточного запаса топлива при перелетах на неограниченные дальности. В этом смысле презентация совершенно корректна: наличие такого двигателя обеспечивает энергоснабжение систем ракеты или любого иного аппарата сколь угодно долгое время», - сказал он «Ридусу».

Работы с таким двигателем в СССР начались ровно 60 лет назад под руководством академиков М. Келдыша, И. Курчатова и С. Королева. В те же самые годы аналогичные работы велись в США, но были свернуты в 1965 году. В СССР работы продолжались еще около десятилетия, прежде чем тоже были признаны неактуальными. Возможно, поэтому в Вашингтоне не сильно передернули, заявив, что не удивлены презентацией российской ракеты.

В России идея ядерного двигателя никогда не умирала - в частности, с 2009 года ведется практическая разработка такой установки. Судя по срокам, заявленные президентом испытания вполне укладываются именно в этот совместный проект Роскосмоса и Росатома - поскольку разработчики и планировали провести полевые испытания двигателя в 2018 году. Возможно, в связи с политическими причинами они чуть поднатужились и сдвинули сроки «влево».

«Технологически это устроено так, что ядерный энергоблок нагревает газовый теплоноситель. И этот разогретый газ либо вращает турбину, либо создает реактивную тягу напрямую. Определенное лукавство в презентации ракеты, которую мы услышали, состоит в том, что дальность ее полета все-таки не бесконечна: она ограничена объемом рабочего тела - жидкого газа, который физически можно закачать в баки ракеты», - говорит специалист.

При этом у космической ракеты и крылатой ракеты принципиально разные схемы управления полетом, поскольку у них разные задачи. Первая летит в безвоздушном пространстве, ей не надо маневрировать, - достаточно придать ей первоначальный импульс, и далее она движется по расчетной баллистической траектории.

Крылатая же ракета, наоборот, должна непрерывно менять траекторию, для чего у нее должен быть достаточный запас топлива, чтобы создавать импульсы. Будет ли это топливо воспламеняться ядерной энергоустановкой или традиционной - в данном случае не принципиально. Принципиален только запас этого топлива, подчеркивает Тихомиров.

«Смысл ядерной установки при полетах в дальний космос - это наличие на борту источника энергии для питания систем аппарата неограниченно долгое время. При этом может быть не только ядерный реактор, но и радиоизотопные термоэлектрические генераторы. А смысл такой установки на ракете, полет которой не будет продолжаться долее нескольких десятков минут, мне пока не вполне ясен», - признаётся физик.

Доклад в Манеже лишь на пару недель запоздал по сравнению с заявлением NASA , сделанным 15 февраля, о том, что американцы возобновляют научно-исследовательские работы по ядерному ракетному двигателю, заброшенные ими полвека назад.

Кстати, в ноябре 2017 года уже и Китайская корпорация аэрокосмической науки и техники (CASC) сообщила, что до 2045 года в КНР будет создан космический корабль на ядерном двигателе. Поэтому сегодня можно смело говорить о том, что мировая ядерно-двигательная гонка началась.



Поделиться