Системы массового обслуживания на современном этапе развития. Модели систем массового обслуживания

В практике человеческой деятельности большое место занимают процессы массового обслуживания, которые возникают в системах, предназначенных для многоразового использования при решении однотипных задач. Такие системы получили название систем массового обслуживания (СМО). Примерами таких систем являются телефонные системы, вычислительные комплексы, системы автотранспортного, авиационного, ремонтного обслуживания, магазины, билетные кассы и т.п.

Каждая система состоит из определенного числа обслуживающих единиц (приборов, аппаратов, устройств" пунктов, станций), которые называются каналами обслуживания. По числу каналов СМО подразделяют на одноканальные и многоканальные. Схема одноканальной системы массового обслуживания представлена на рис. 6.2.

Заявки в систему поступают обычно не регулярно, а случайно, образуя случайный поток заявок (требований). Само обслуживание каждого требования может занимать либо определенное время, либо, что бывает чаще, неопределенное время. Случайный характер приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО не обслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.

Рис. 6.2.

Целью исследования систем массового обслуживания является анализ качества их функционирования и выявление возможностей его улучшения. При этом понятие "качество функционирования" в каждом отдельном случае будет иметь свой конкретный смысл и выражаться различными количественными показателями. Например, такими количественными показателями, как величина очереди на обслуживание, среднее время обслуживания, ожидания обслуживания или нахождения требования в обслуживающей системе, время простоя обслуживающих аппаратов; уверенность, что все поступившие в систему требования будут обслужены.

Таким образом, под качеством функционирования системы массового обслуживания понимают не собственно качество выполнения той или иной работы, запрос на которую поступил, а степень удовлетворения потребности в обслуживании.

Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок.

Классификация систем массового обслуживания

Первым признаком, позволяющим классифицировать задачи массового обслуживания, является поведение требований, поступивших в обслуживающую систему в тот момент, когда все аппараты заняты.

В некоторых случаях требование, попавшее в систему в тот момент, когда все аппараты заняты, не может ждать освобождения их и покидает систему не обслуженным, т.е. требование теряется для данной обслуживающей системы. Такие обслуживающие системы называются системами с потерями, а сформулированные по ним задачи - задачами обслуживания для систем с потерями.

Если же требование, попав в систему, становится в очередь и ждет освобождения аппарата, то такие системы называются системами с ожиданием, а соответствующие задачи называются задачами обслуживания в системах с ожиданием. СМО с ожиданием подразделяется на разные виды в зависимости от того, как организована очередь: с ограниченной или неограниченной длиной очереди, с ограниченным временем ожидания и т.п.

СМО различаются и по числу требований, которые одновременно могут находиться в обслуживающей системе. Выделяют:

  • 1) системы с ограниченным потоком требований;
  • 2) системы с неограниченным потоком требований.

В зависимости от форм внутренней организации обслуживания в системе выделяют:

  • 1) системы с упорядоченным обслуживанием;
  • 2) системы с неупорядоченным обслуживанием.

Важным этапом исследования СМО является выбор критериев, характеризующих изучаемый процесс. Выбор зависит от типа исследуемых задач, от цели, которая преследуется решением.

Наиболее часто на практике встречаются системы, в которых поток требований близок к простейшему, а время обслуживания подчиняется показательному закону распределения. Эти системы наиболее полно разработаны в теории массового обслуживания.

В условиях предприятия типичными являются задачи с ожиданием, с конечным числом обслуживающих аппаратов, с ограниченным потоком требований и с неупорядоченным обслуживанием.

ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ

Введение

Теория массового обслуживания является важным разделом системного анализа и исследования операций. Она богата разнообразными приложениями: от задач. связанных с эксплуатацией телефонных сетей, до научной организации производства. Эта теория используется там, где имеются вызовы и клиенты, сигналы и изделия массового производства, а также там, где изделия обслуживаются, обрабатываются, передаются.

Идеи и методы теории массового обслуживания (ТМО) получают всё большее распространение. Многие задачи техники, экономики, военного дела, естествознания могут быть поставлены и решены в терминах ТМО.

Своим возникновением ТМО обязана, в первую очередь, прикладным вопросам телефонии, в которых из-за большого числа независимых или слабо зависимых источников (абонентов телефонных станций) потоки заявок (вызовов) имеют четко выраженный случайный характер. Случайные колебания (флуктуации) около некоторого среднего являются в данном случае не результатом какого-то отклонения от нормы, а закономерностью, свойственной всему процессу. С другой стороны, стабильность работы телефонных станций, возможность получения хороших статистических данных создали предпосылки для выявления основных характеристик, свойственных данному процессу обслуживания.

Впервые на это обратил внимание и провёл исследования датчанин А.К. Эрланг. Основные его работы в данной области относятся к 1908 - 1921 годам. С этого времени, интерес к проблемам, выдвинутым Эрлангом, необычайно возрос. В 1927 - 1928 годах появляются работы Молина и Фрайя, позже в 1930 - 1932 годах - интересные работы Поллачека, А.Н. Колмогорова, А.Я. Хинчина.

Нужно сказать, что первые задачи ТМО были достаточно простыми и допускали получение окончательных аналитических зависимостей. О, развитие шло как по линии увеличения сферы приложения ТМО, так и по линии усложнения стоящих перед ней задач. Оказалось, что задачи типа телефонных, возникают в самых разнообразных направлениях исследований: в естествознании. в технике, на транспорте, в военном деле, в организации производства и т.д.

23. Системы массового обслуживания

Во многих областях практической деятельности человека мы сталкиваемся с необходимостью пребывания в состоянии ожидания. Подобные ситуации возникают в очередях в билетных кассах, в крупных аэропор­тах, при ожидании обслуживающим персоналом самолетов разрешения на взлет или посадку, на телефонных станциях в ожидании освобождения линии абонента, в ремонтных цехах в ожидании ремонта станков и обо­рудования, на складах снабженческо-сбытовых организаций в ожидании разгрузки или погрузки транспортных средств. Во всех перечисленных случаях имеем дело с массовостью и обслуживанием. Изучением таких ситуаций занимается теория массового обслуживания.

Теория массового обслуживания – область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др.

Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами.

23.1. Понятие смо

В теории систем массового обслуживания (СМО) обслуживаемый объект называют требованием. В общем случае под требованием обычно понимают запрос на удовлетворение некоторой потребности, например, разговор с абонентом, посадка самолета, покупка билета, получение материалов на складе.

Средства, обслуживающие требования, называютсяобслуживающими устройствами иликаналами обслуживания . Например, к ним относятся каналы телефонной связи, посадочные полосы, мастера-ремонтники, би­летные кассиры, погрузочно-разгрузочные точки на базах и складах.

Совокупность однотипных обслуживающих устройств называется системой массового обслуживания . Такими системами могут быть телефонные стан­ции, аэродромы, билетные кассы, ремонтные мастерские, склады и базы снабженческо-сбытовых организаций и т.д.

Основной задачей теории СМО является изучение режима функциони­рования обслуживающей системы и исследование явлений, возникающих в процессе обслуживания. Так, одной из характеристик обслуживающей системы является время пребывания требования в очереди. Очевидно, что это время можно сократить за счет увеличения количества обслужи­вающих устройств. Однако каждое дополнительное устройство требует определенных материальных затрат, при этом увеличивается время без­действия обслуживающего устройства из-за отсутствия требований на обслуживание, что также является негативным явлением. Следовательно, в теории СМО возникают задачи оптимизации: каким образом достичь оп­ределенного уровня обслуживания (максимального сокращения очереди или потерь требований) при минимальных затратах, связанных с просто­ем обслуживающих устройств.

Источник. Источник определяется как устройство или множество, из которого требования поступают в систему для обслуживания. Источник называют бесконечным или конечным в зависимости от того, бесконечное или конечное число требований содержится в нем. Будем всегда предполагать, что источник, генерирующий требования, неисчерпаем. Например, хотя абонентов некоторого телефонного узла конечное число, предполагаем, что они образують бесконечный источник.

Входящий поток. Требования, поступающие из источника на обслуживание, образуют входящий поток. Само требование можно рассматривать как запрос на удовлетворение какой-то потребности. Примеров входящих потоков можно привести множество. Это - поток информации, поступающей на обработку в ЭВМ; поток заявок на АТС; поток клиентов, приходящих в ателье, и больных в поликлинику, поток прибывающих в порт судов; налетающие на объект удара самолеты и ракеты противника и т. д.

Обслуживающая система. Под обслуживающей системой понимают множество технических средств или производственного персонала (различного рода установки, приборы, устройства, тоннели, взлетно-посадочные полосы, линии связи, продавцы, бригады рабочих или служащих, кассиры и т. д.), выполняющих функции обслуживания. Все перечисленное выше, как уже говорилось, объединяется одним названием «канал обслуживания» (обслуживающий прибор). Состав системы определяется количеством каналов (приборов, линий). По количеству каналов системы можно подразделить на одноканальные и многоканальные.

Выходящий поток. Выходящий поток - это поток требований, покидающих систему после обслуживания. Сюда могут входить и требования, которые покинули систему, не пройдя обслуживания.

Входящий поток, функционирование обслуживающей системы как результат обслуживания, выходящий поток подлежат количественному описанию. Для того чтобы проводить математические исследование процесса массового обслуживания, необходимо полно определить систему обслуживания. Обычно это означает:

- задание входящего потока. Здесь имеются в виду как средняя интенсивность поступления требований, так и статистическая модель их поступления (т. е. закон распределения моментов поступления требований в систему);

- задание механизма обслуживания. Это означает указание того, когда обслуживание допустимо, сколько требований может обслуживаться одновременно и как долго длится обслуживание. Последнее свойство обычно характеризуют статистическим распределением длительности обслуживания (закон распределения времени обслуживания);

- задание дисциплины обслуживания. Это означает указание способа, по которому происходит отбор одного требования из очереди (если она есть) на обслуживание. В простейшем варианте дисциплина обслуживания заключается в обслуживании требований в порядке их поступления (справедливый принцип), однако существует и много других возможностей.

Задание системы предполагает также известное описание взаимодействия между отдельными ее частями.

Когда система достаточно полно определена, появляется основание для построения математической модели. Если математическая модель более или менее адекватно отображает реальную систему, то она позволяет получить основные характеристики функционирования системы. Разумеется, модель значительно упрощает практическую ситуацию, но это не умаляет математических методов теории массового обслуживания и положение дел не отличается от положения дел в других областях прикладной математики.

Введение

Математическое описание метода

1 Общие сведения о системах массового обслуживания

2 Многоканальные СМО с отказами

Обоснование и выбор инструментальной среды для проведения расчетов

Алгоритмическое обеспечение

1 Постановка задачи

2 Математическая модель

3 Построение моделей СМО с отказами в Simulink

3.1 Для 3-х канальной СМО

3.2 Для 5-канальной СМО

4 Расчет показателей эффективности

4.1 для 3-х канальной СМО

4.2 Для 5-канальной СМО

5 Анализ результатов моделирования

Заключение

Список использованной литературы

ВВЕДЕНИЕ

На сегодняшний день метод имитационного моделирования является одним из наиболее эффективных методов исследования процессов и систем самой различной природы и степени сложности. Сущность метода состоит в составлении модели, имитирующей процесс функционирования системы, и расчета характеристик этой модели с целью получения статистических данных моделируемой системы. Используя результаты имитационного моделирования, можно описать поведение системы, оценить влияние различных параметров системы на ее характеристики, выявить преимущества и недостатки предлагаемых изменений, прогнозировать поведение системы.

Лучшей иллюстрацией области применения имитационного моделирования являются системы массового обслуживания. В терминах СМО описываются многие реальные системы: вычислительные системы, узлы сетей связи, магазины, производственные участки - любые системы, где возможны очереди и отказы в обслуживании. Цель данной курсовой работы - создание блок-схемы в среде MatLab Simulink, наглядно иллюстрирующей алгоритм расчета параметров модели многоканальной СМО с отказами и формирование рекомендаций по выбору оптимального количества каналов обслуживания.

Для достижения поставленной цели выделим основные задачи:

-подробное описание многоканальной СМО с отказами;

выбор контрольного примера и постановка задачи;

определение алгоритма решения;

создание имитационной модели в среде MATLAB (Simulink);

анализ результатов и обоснование выбора оптимального количества каналов для исследуемой СМО

1. МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ МЕТОДА

.1 Общие сведения о системах массового обслуживания

В жизни часто встречаются системы, предназначенные для многоразового использования при решении однотипных задач: очередь в магазине, обслуживание автомобилей на автозаправках, билетные кассы и т.п. Возникающие при этом процессы получили название процессов обслуживания, а системы - систем массового обслуживания (СМО).

Процессы поступления и обслуживания заявок в СМО являются случайными, что обусловлено случайным характером потока заявок и длительности их обслуживания.

Будем рассматривать СМО с марковским случайным процессом, когда вероятность состояния СМО в будущем зависит только от ее настоящего состояния и не зависит от прошлого (процесс без последействия или без памяти). Условие марковского случайного процесса необходимо, чтобы все потоки событий, при которых система переходит из одного состояния в другое (потоки заявок, потоки обслуживания и т.д.), были пуассоновскими. Пуассоновский поток событий обладает рядом свойств, в том числе свойствами отсутствия последействия, ординарности, стационарности.

В простейшем пуассоновском потоке событий случайная величина распределена по показательному закону:

,(1.1)

где λ - интенсивность потока.

Целью теории систем массового обслуживания является выработка рекомендаций по рациональному их построению, организации работы и регулированию потока заявок. Отсюда вытекают задачи, связанные с теорией массового обслуживания: установление зависимостей работы СМО от ее организации, характера потока заявок, числа каналов и их производительности, правил работы СМО.

Основой СМО является определенное число обслуживающих устройств - каналов обслуживания.

Назначение СМО состоит в обслуживании потока заявок (требовании ), представляющих последовательность событий, поступающих нерегулярно и в заранее неизвестные и случайные моменты времени. Само обслуживание заявок также имеет непостоянный и случайный характер. Случайный характер потока заявок и времени их обслуживания обусловливает неравномерность загрузки СМО: на входе могут накапливаться необслуженные заявки (перегрузка СМО) либо заявок нет или их меньше, чем свободных каналов (недогрузка СМО).

Таким образом, в СМО поступают заявки, часть из которых принимается на обслуживание каналами системы, часть становится в очередь на обслуживание, а часть покидает систему необслуженными.

Основными элементами СМО являются:

1.входной поток заявок;

2.очередь;

.каналы обслуживания;

.выходной поток заявок (обслуженные заявки).

Эффективность функционирования СМО определяется ее пропускной способностью - относительным числом обслуженных заявок.

По числу каналов n все СМО разделяются на одноканальные (n = 1) и многоканальные (n > 1). Многоканальные СМО могут быть как однородными (по каналам), так и разнородными (по продолжительности обслуживания заявок).

По дисциплине обслуживания различаются три класса СМО:

1.СМО с отказами (нулевое ожидание или явные потери). "Отказная" заявка вновь поступает в систему, чтобы ее обслужили (например, вызов абонента через АТС).

2.СМО с ожиданием (неограниченное ожидание или очередь). При занятости системы заявка поступает в очередь и, в конце концов, будет выполнена (торговля, сфера бытового и медицинского обслуживания).

.СМО смешанного типа (ограниченное ожидание). Имеется ограничение на длину очереди (сервис по обслуживанию автомобилей). Ограничение на время пребывания заявки в СМО (ПВО, особые условия обслуживания в банке) также может рассматриваться.

Различают открытые (поток заявок не ограничен), упорядоченные (заявки обслуживаются в порядке их поступления) и однофазные (однородные каналы выполняют одну и ту же операцию) СМО.

Эффективность работы систем массового обслуживания характеризуют показатели, которые можно разбить на три групп:

1.Группа показателей эффективности использования СМО:

-абсолютная пропускная способность (А ) - среднее число заявок, обслуживаемых в единицу времени, или интенсивность выходящего потока обслуженных заявок (это часть интенсивности входящего потока заявок);

относительная пропускная способность (Q ) - отношение абсолютной пропускной способности к среднему числу заявок, поступивших в систему за единицу времени;

средняя продолжительность периода занятости СМО ();

интенсивность нагрузки (ρ) показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость СМО;

коэффициент использования СМО - средняя доля времени, в течение которого система занята обслуживанием заявок.

2.Показатели качества обслуживания заявок:

среднее время ожидания заявки в очереди ();

среднее время пребывания (обслуживания) заявки в СМО ();

вероятность отказа заявки в обслуживании без ожидания ();

вероятность немедленного приема заявки ();

закон распределения времени ожидания заявки в очереди в СМО;

среднее число заявок в очереди ();

среднее число заявок, находящихся в СМО ().

.Показатели эффективности функционирования пары "СМО - потребитель" (вся совокупность заявок или их источник, например средний доход в единицу времени от СМО). Эта группа полезна, когда доход от СМО и затраты на ее обслуживание измеряются в одних и тех же единицах, и отражает специфику работы СМО.

1.2 Многоканальные СМО с отказами

Система M/M/n/0 представляет собой n- линейную СМО с r местами ожидания (r=0), в которую поступает пуассоновский поток интенсивности , а времена обслуживания заявок независимы и при этом время обслуживания каждой заявки на любом приборе распределено по экспоненциальному закону с параметром . В случае, когда , заявка, поступившая в переполненную систему (т.е. когда заняты все приборы и все места ожидания), теряется и вновь в нее не возвращаются. Система M/M/n/r также относится к экспоненциальным СМО.

Уравнения, описывающие распределение заявок в системе

Выпишем систему дифференциальных уравнений Колмогорова. Для этого рассмотрим моменты t и . Предполагая, что в момент t процесс v(t) пребывает в состоянии i, определим, куда он может попасть в момент , и найдем вероятности его переходов за время . Здесь возможны три случая.

А. iпроцесс не выйдет из состояния i равна произведению вероятности не поступления заявки за время на вероятность того, что за это время не обслужится ни одна из i заявок, т.е. равна . Вероятность перехода за время в состояние i+1 равна - вероятности поступления заявки в систему. Наконец поскольку каждый прибор закончит за время обслуживание находящейся в нем заявки с вероятностью , а таких приборов i, то вероятность перехода в состояние i-1 равна . Остальные переходы имеют вероятность .

Б. n≤i остаться в состоянии i равна , перейти в состояние i-1 за это же время

Таким образом, мы фактически доказали, что процесс является процессом рождения и гибели с интенсивностями при при и при . Обозначая через , распределение числа заявок в системе в момент t, получаем следующие выражения для в случае, когда :

,

,

,

Если же , то, что очевидно последнего выражения не будет, а в предпоследнем индекс i может принимать значения i=n,n+1,… .

Вычитая теперь из обеих частей равенства, деля на и переходя к пределу

при , получаем систему дифференциальных уравнений:

,

,

, (1.2)

.

Стационарное распределение очереди

В случае конечного r, например r=0, процесс является эргодическим. Также он будет эргодическим в случае при выполнении условия, о котором будет сказано ниже. Тогда из (1) при получаем, что стационарные вероятности состояний pi удовлетворяют систему уравнений:

,

,(1.3)

,

.

Поясним теперь вывод системы уравнений (1.3), исходя из принципа глобального баланса. Так, например, согласно диаграмме переходов для фиксированного состояния i, , имеем, что суммарные потоки вероятностей входящий в состояние i и выходящий из него равны, соответственно, и .

Рисунок 1 Диаграмма переходов

Исходя теперь из принципа локального баланса, что баланс потоков вероятностей между состояниями i и i+1 отражается равенствами:

,

,(1.4)

являющимися уравнениями локального баланса для данной СМО. Проверка справедливости равенств (1.4) производится непосредственным суммированием системы уравнений (1.3) по i при i=0,1,…,n+r-1.

Из соотношения (1.4), выражая рекуррентно вероятности через ,

где , а определяется из условия нормировки , т.е.

.(1.6)

Ясно, что формулы можно получить из общих соотношений для стационарных вероятностей состояний процесса рождения и гибели при указанных выше значениях и .

Если , то стационарный режим существует при любом .

Выпишем теперь выражения для некоторых характеристик очереди.

Стационарная вероятность немедленного обслуживания заявки (обслуживания без ожидания) совпадает со стационарной вероятностью того, что в системе находится 0,1,…,n-1 заявок, т.е.

Рассмотрим интересующий нас частный случай, когда r=0. тогда в системе отсутствуют места для ожидания (система с потерями M/M/n/0) и такая система носит название системы Эрланга . Система Эрланга описывает процессы, происходящие в простейших телефонных сетях, и названа так в честь А. К. Эрланга, впервые её исследовавшего. Для системы M/M/n/0 стационарные вероятности определяются формулой Эрланга

,.

Следовательно, стационарная вероятность потери заявки определяется формулой:

,

которую также называют формулой Эрланга.

Наконец, когда , то мы имеем систему , для которой при любом стационарные вероятности существуют и, как следует из формул Эрланга при , имеют вид

,.

Вернемся теперь к соотношениям (1.4). Суммируя эти равенства по i=0,1,…,n+r-1 , получаем

,

где - среднее число занятых приборов. Выписанное соотношение выражает равенство интенсивностей принятого в систему и обслуживаемого ею потоков в стационарном режиме. Отсюда мы можем получить выражение для пропускной способности системы , определяемой как среднее число заявок, обслуженных системой в единицу времени, и называемой иногда интенсивностью выхода:

.

Выражение для стационарного числа N заявок в системе нетрудно получить либо непосредственно из распределения вероятностей (4), либо воспользовавшись очевидным соотношением .

Стационарное распределение времени пребывания заявки в системе

Стационарное распределение W(x) времени ожидания начала обслуживания принятой в систему M/M/n/r заявки вычисляется практически так же, как и для системы . Заметим, что заявка, заставшая при поступлении i других заявок в системе, немедленно начинает обслуживаться, если i времена.

Путем несложных преобразований находим, учитывая независимость времени обслуживания от времени ожидания начала обслуживания, находим, что стационарное распределение V(x) времени пребывания в системе принятой к обслуживанию заявки имеет ПЛС

.

Стационарные средние времена ожидания начала обслуживания и пребывания заявки в системе задаются формулами:

,

.

Последнее выражение можно также получить из формул Литтла.

Нестационарные характеристики

Нестационарное распределение числа заявок в системе получается интегрированием системы (1) с учетом начального распределения .

Если , то система (1) представляет собой линейную однородную систему обыкновенных дифференциальных уравнений первого порядка с постоянными коэффициентами.

Выходящий поток

В системе , в установившемся режиме поток заявок, покидающих систему, является пуассоновским. То же самое можно сказать и о выходящем потоке из системы M/M/n/r, если понимать под ним суммарный поток как обслуженных, так и потерянных заявок. Доказательство этого с помощью метода обращения времени полностью совпадает с доказательством аналогичного факта для системы .

2. Обоснование и выбор инструментальной среды для проведения расчетов

Моделирование систем является важным инструментом, когда необходимо понять, объяснить непонятную проблему или решить поставленную задачу с помощью компьютера. Серией компьютерных экспериментов исследуют модель и получают подтверждение или опровержение передэкспериментальных гипотез о поведении модели.

Результаты поведения модели менеджер использует для реального объекта, то есть принимает плановое или прогнозируемое решение, полученное с помощью исследования модели.- это компьютерная программная система для моделирования систем управления. Simulink является составным элементом Matlab и использует для моделирования все возможности. С помощью Matlab Simulink моделируются линейные, нелинейные, дискретные, стохастические и гибридные системы.

При этом, в отличие от классических способов моделирования, пользователю не нужно досконально изучать язык программирования и многочисленные методы математики, а достаточно общих знаний, которые нужны для работы с компьютером, и знаний о той предметной области, в которой он работает.

При работе в Matlab Simulink можно моделировать динамические системы, выбирать методы решения дифференциальных уравнений, а также способов изменения модельного времени (с фиксированным или переменным шагом). В ходе моделирования имеется возможность следить за процессами, которые происходят в системе. Для этого используются специальные устройства наблюдения, входящие в состав библиотеки Simulink. Результаты моделирования могут быть представлены в виде графиков и таблиц.

Преимущество Simulink заключается в том, что он позволяет пополнять библиотеки блоков с помощью программ, написанных как на языке Matlab, так и на языках С++, Fortran и Ada.

Исследуемую модель системы составляют в виде блок-схемы. Каждый типичный блок является объектом с графическими чертежами, графическими и математическими символами исполняемой программой и числовыми или формульными параметрами. Блоки соединяются линиями, которые отражают движение материальных, финансовых и информационных потоков между объектами.

Итак, Matlab Simulink - это система имитационного моделирования, которая позволяет удобно и легко строить и исследовать модели экономических процессов.

3. Алгоритмическое обеспечение

.1 Постановка задачи

В качестве многоканальной СМО с отказами рассмотрим работу вычислительного центра.

В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч).

Требуется определить основные характеристики эффективности данной СМО, если интенсивность, с которой каждая ЭВМ обслуживает заказ, равна 1/3 заявки в час, а интенсивность, с которой заявки поступают в вычислительный центр, равна 0,25 единиц в час. Рассмотреть случай увеличения количества ЭВМ на 2 единицы в центре и проследить, как изменятся основные характеристики этой системы. По результатам анализа полученных результатов, дать рекомендации относительно оптимального числа каналов обслуживания.

Пусть СМО содержит n каналов, интенсивность входящего потока заявок равна , а интенсивность обслуживания заявки каждым каналом равна . Размеченный граф состояний системы изображён на рисунке 2.

Рисунок 2 - График состояний многоканальной СМО с отказами

Состояние S0 означает, что все каналы свободны, состояние Sk (k = 1, n) означает, что обслуживанием заявок заняты k каналов. Переход из одного состояния в другое соседнее правое происходит скачкообразно под воздействием входящего потока заявок интенсивностью независимо от числа работающих каналов (верхние стрелки). Для перехода системы из одного состояния в соседнее левое неважно, какой именно канал освободится. Величина характеризует интенсивность обслуживания заявок при работе в СМО k каналов (нижние стрелки).

Легко увидеть, что многоканальная СМО с отказами является частным случаем системы рождения и гибели, если в последней принять и

(3.1)

При этом для нахождения финальных вероятностей можно воспользоваться формулами (4) и (5). С учётом (16) получим из них:

(3.2)

(3.3)

Формулы (3.2) и (3.3) называются формулами Эрланга - основателя теории массового обслуживания.

Вероятность отказа в обслуживании заявки р_отк равна вероятности того, что все каналы заняты, т.е. система находится в состоянии Sn. Таким образом,

(3.4)

Относительную пропускную способность СМО найдём из (3.4):

(3.5)

Абсолютную пропускную способность найдём из (3,5):

Среднее число занятых обслуживанием каналов можно найти таким образом: так как каждый занятый канал в единицу времени обслуживает в среднем заявок, то можно найти по формуле:

3.3 Построение моделей СМО с отказами в Simulink

.3.1 для 3-х канальной СМО

Рисунок 3 Модель СМО с 3-мя каналами обслуживания

Рисунок 3 (продолжение) Модель СМО с 3-мя каналами обслуживания

В моделях, реализованных в Simulink, есть возможность вывести значения показателей эффективности СМО. При изменении входных параметров, значения будут пересчитываться автоматически.

Система массового обслуживания с тремя каналами может находиться в четырех состояних: S0 - все каналы свободны, S1 - 1 канал занят, S2 - 2 канала занято, S3 - все 3 канала заняты. Вероятности этих состояний представлены на рисунке 4.

Рисунок 4 Вероятности состояний для СМО с 3-мя каналами

3.3.2 Для 5-канальной СМО

Рисунок 5 Модель СМО с 5-ю каналами

Рисунок 5 (продолжение) Модель СМО с 5-ю каналами

Как и в случае n=3 для СМО с n=5 реализован вывод значений показателей эффективности в самой модели.

Система массового обслуживания с пятью каналами может находиться в шести состояних: S0 - все каналы свободны, S1 - 1 канал занят, S2 - 2 канала занято, S3 -3 канала заняты, S4 -4 канала заняты, S5 -все 5 каналов заняты. Вероятности этих состояний представлены на рисунке 7

Рисунок 6 Вероятности состояний для СМО с 5-ю каналами

3.4 Расчет показателей эффективности

Расчет показателей эффективности систем массового обслуживания с тремя и пятью каналами был произведен с помощью пакета MS Excel по формулам, описанным в параграфе 3.2

.4.1 для 3-х канальной СМО

Таблица 1 Расчет показателей эффективности трехканальной СМО

n (число каналов обслуживания)3ʎ (интенсивность входящего потока заявок)0,25µ (интенсивность потока обслуженных заявок, выходящих из одного канала)0,33333ρ (приведенная интенсивность потока заявок)0,75вероятности состояний P_00,47584P_10,35688P_20,13383P_30,03346сумма вероятностей1Q (относительная пропускная способность СМО)0,96654A (абсолютная пропускная способность СМО)0,24164P_serv (вероятность того, что заявка будет обслужена)0,96654P_otk (вероятность того, что заявка получит отказ)0,03346n" (среднее число занятых каналов)0,72491

3.4.2 Для 5-канальной СМО

Таблица 2 Расчет показателей эффективности пятиканальной СМО

n (число каналов обслуживания)5ʎ (интенсивность входящего потока заявок)0,25µ (интенсивность потока обслуженных заявок, выходящих из одного канала)0,33333ρ (приведенная интенсивность потока заявок)0,75вероятности состояний P_00,47243P_10,35432P_20,13287P_30,03322P_40,00623P_50,00093сумма вероятностей1Q (относительная пропускная способность СМО)0,99907A (абсолютная пропускная способность СМО)0,24977P_serv (вероятность того, что заявка будет обслужена)0,99907P_otk (вероятность того, что заявка получит отказ)0,00093n" (среднее число занятых каналов)0,7493

3.5 Анализ результатов моделирования

Таблица 3 Сравнение результатов моделирования с теоретическими расчетами для трехканальной СМО

ПараметрТеоретическое значениеЭмпирическое значениеОтклонение (в долях)P_00,475840,4870,023P_otk0,033460,031360,07Q0,966540,96860,002A0,241640,24220,002n"0,724910,72650,002

Таблица 4 Сравнение результатов моделирования с теоретическими расчетами для пятиканальной СМО

ПараметрТеоретическое значениеЭмпирическое значениеОтклонение (в долях)P_00,472428230,48520,026P_otk0,0009342450,00099520,061Q0,966782390,9990,032A0,2416955980,24980,032n"0,7250867930,74930,032

Из таблиц видно, что отклонения эмпирических значений от теоретических не превышает ε=7%. Это означает, что построенные нами модели адекватно описывают поведение системы и они применимы для поиска оптимальных соотношений количества каналов обслуживания.

Таблица 5 Сравнение эмпирических показателей СМО где n=3 и СМО где n=5

ПараметрПоказатели СМО где n=3Показатели СМО где n=5P_00,4870,4852P_otk0,031360,0009952Q0,96860,999A0,24220,2498n"0,72650,7493

Очевидно, что чем выше число каналов обслуживания, тем меньше вероятность отказа системы и выше вероятность того, что заявка будет обслужена. Абсолютная пропускная способность системы в случае функционирования 5 каналов хоть и незначительно выше, чем если бы функционировало всего 3 канала, однако это свидетельствует о том, что необходимо сделать выбор в пользу увеличения числа каналов обслуживания.

Таким образом, проведенный эксперимент показал, насколько можно доверять результатам моделирования и выводам, сделанным на основе интерпретации этих результатов.

ЗАКЛЮЧЕНИЕ

В ходе выполнения курсовой работы были решены все поставленные задачи и достигнута поставленная цель, а именно - были созданы модели, описывающие экономический процесс, рассчитаны показатели этих моделей и сформированы рекомендации для практического применения.

Моделирование было выполнено в системе Matlab Simulink в виде блок-схем, которые в простой и удобной форме показывают сущности экономических процессов. Так же была произведена проверка адекватности построенных моделей путем расчета теоретических показателей эффективности выбранных типов СМО, по результатам которой модели были признаны с большой вероятностью приближенными к реальности. Из этого следует, что при рассмотрении аналогичных процессов и для экономии времени, мы можем воспользоваться моделями, разработанными в ходе этой работы.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1.Рыжиков Ю.И. Имитационное моделирование. Теория и технологии. - СПб.: КОРОНА принт: М.: Альтекс-А, 2004.

2.Варфоломеев В.И. Алгоритмическое моделирование элементов экономических систем: Практикум. Учеб. пособие. - М.: Финансы и статистика, 2000.

.Гмурман В.Е. Теория вероятностей и математическая статистика. Учеб. пособие для вузов. - М.: Высшая школа, 1998

  • Простейший поток и применение практических задач.
  • Нестационарные пуассоновские потоки.
  • Потоки с ограниченными последствиями (потоки Пальма).
  • Потоки восстановления.
  • 1. Введение.

    1.1. Историческая справка.

    Большинство систем, с которыми человек имеет дело, являются стохастическими. Попытка их математического описания с помощью детерминистических моделей приводит к огрублению истинного положения вещей. При решении задач анализа и проектирования таких систем приходится считаться с положением вещей, когда случайность является определяющей для процессов, протекающих в системах. При этом пренебрежение случайностью, попытка “втиснуть” решение перечисленных задач в детерминистические рамки приводит к искажению, к ошибкам в выводах и практических рекомендациях.

    Первые задачи теории систем массового обслуживания (ТСМО) были рассмотрены сотрудником Копенгагенской телефонной компании, датским ученым А.К. Эрлангом (1878- 1929г) в период между 1908 и 1922гг. Эти задачи были вызваны к жизни стремлением упорядочить работу телефонной сети и разработать методы, позволяющие заранее повысить качество обслуживания потребителей в зависимости от числа используемых устройств. Оказалось, что ситуации, возникающие на телефонных станциях, являются типичными не только для телефонной связи. Работа аэродромов, морских и речных портов, магазинов, терминальных классов, электронных вычислительных комплексов, радиолокационных станций и т.д. может быть описана в рамках ТСМО.

    1.2. Примеры систем массового обслуживания. Анализ задач ТСМО.

    Пример 1. Телефонная связь времен Эрланга представляла из себя телефонную станцию, связанную с большим числом абонентов. Телефонистки станции по мере поступления вызовов соединяли телефонные номера между собой.

    Задача: Какое количество телефонисток (при условии их полной занятости) должно работать на станции для того, чтобы потери требований были минимальными.

    Пример 2. Система скорой помощи некоего городского района представляет собой пункт (который принимает требования на выполнение), некоторое количество автомашин скорой помощи и несколько врачебных бригад.

    Задача: Определить количество врачей, вспомогательного персонала, автомашин, для того чтобы время ожидания вызова было для больных оптимальным при условии минимизации затрат на эксплуатацию системы и максимизации качества обслуживания.

    Пример 3. Важной задачей является организация морских и речных перевозок грузов. При этом особое значение имеют оптимальное использование судов и портовых сооружений.

    Задача: Обеспечить определенный объем перевозок при минимальных расходах. При этом сократить простои судов при погрузочно-разгрузочных работах.

    Пример 4. Система обработки информации содержит мультиплексный канал и несколько ЭВМ. Сигналы от датчиков поступают на мультиплексный канал, где буферизуются и предварительно обрабатываются. Затем поступают в ту ЭВМ, где очередь минимальна.

    Задача: Обеспечить ускорение обработки сигналов при заданной суммарной длине очереди.

    Пример 5 . На рис 1.1. изображена структурная схема типичной системы массового обслуживания – ремонтного предприятия (например, по ремонту ПЭВМ). Порядок ее работы ясен из схемы и не требует разъяснений.

    рис 1.1.

    Нетрудно привести множество других примеров из самых различных областей деятельности.

    Характерным для таких задач является:

    1. условия “двойной” случайности –
      • случаен момент времени поступления заказа на обслуживание (на телефонную станцию, на пункт скорой помощи, на вход процессора, случаен момент времени прибытия морского судна под погрузку и т.д.);
      • случайна длительность времени обслуживания.

    2)проблема бича нашего времени – очередей: судов перед шлюзами, машин перед прилавками, задач на входе процессоров вычислительного комплекса и т.д.

    А.К. Эрланг обратил внимание на то, что СМО могут быть разделены на два типа, а именно: на системы с ожиданием и системы с потерями. В первом случае – заявка, поступившая на вход системы “ждет” очереди на выполнение, во втором – она из-за занятости канала обслуживания получает отказ и теряется для СМО.

    В дальнейшем мы увидим, что к классическим задачам Эрланга прибавляются новые задачи:

    Реальные системы, с которыми приходится иметь дело на практике, как правило, очень сложны и включают в себя ряд этапов (стадий) обслуживания (рис 1.1.). Причем на каждом этапе может существовать вероятность отказа в выполнении или существует ситуация приоритетного обслуживания по отношению к другим требованиям. При этом отдельные звенья обслуживания могут прекратить свою работу (для ремонта, подналадки и т.д.) или могут быть подключены дополнительные средства. Могут быть такие обстоятельства, когда требования, получившие отказ, вновь возвращаются в систему (подобное может происходить в информационных системах).

    1.3. Понятия, определения, терминология.

    Все СМО имеют вполне определенную структуру, изображенную на рис 1.2

    рис 1.2

    Определения, термины

      • Потоком называют последовательность событий. Поток, состоящий из требований на обслуживание, называют потоком требований.
      • Поток требований, поступающих в обслуживающую систему, называют входящим потоком.
      • Поток требований, которые обслужены, называют выходящим потоком.
      • Совокупность очередей и приборов (каналов) обслуживания называются системой обслуживания.
      • Каждые требования поступают на свой канал, где подвергается операции обслуживания.
      • Каждая СМО имеет определенные правила формирования очереди и правила или дисциплину обслуживания.

    1.4. Классификация СМО.

    1.4.1. По характеру источника требований различают СМО с конечным и бесконечным количеством требований на входе.

    В первом случае в системе циркулирует конечное, обычно постоянное количество требований, которые после завершения обслуживания возвращаются в источник.

    Во втором случае источник генерирует бесконечное число требований.

    Пример 1. Цех с постоянным количеством станков или определенное количество ПЭВМ в терминальном классе, требующих постоянного профилактического осмотра и ремонта.

    Пример 2 . Сеть Internet с бесконечным требованием на входе, любой магазин, парикмахерская и т.д.

    Первый вид СМО называют замкнутой, второй – разомкнутой.

    СМО различают:

    1.4.2. По дисциплине обслуживания:

      1. обслуживание в порядке поступления;
      2. обслуживание в случайном порядке (в соответствии с заданным законом распределения);
      3. обслуживание с приоритетом.

    1.4.3. по характеру организации:

      1. с отказами;
      2. с ожиданиями;
      3. с ограничением ожидания.

    В первом случае заявка получает отказ, когда канал занят. Во втором случае – ставится в очередь и ждет освобождения канала. В третьем случае вводится ограничения на длительность ожидания.

    1.4.4. По количеству единиц обслуживания:

      1. одноканальные;
      2. двухканальные;
      3. многоканальные.

      1.4.5. По числу этапов (фаз) обслуживания - на однофазные и многофазные. (Примером многофазных СМО может служить любая поточная линия).

      1.4.6. По свойствам каналов: на однородные, когда каналы имеют одинаковую характеристику и неоднородные в противном случае.

    Достаточно часто при анализе экономических систем приходится решать так называемые задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элемента системы) могут возникать, по крайней мере, две типичные ситуации:

    1. число заявок слишком велико для данной станции, возникают очереди, и за задержки в обслуживании приходится платить;
    2. на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

    Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций.

    Теория массового обслуживания – специальный раздел теории систем – это раздел теории вероятности, в котором изучаются системы массового обслуживания с помощью математических моделей.

    Система массового обслуживания (СМО) – это модель, включающая в себя: 1) случайный поток требований, вызовов или клиентов, нуждающихся в обслуживании; 2) алгоритм осуществления этого обслуживания; 3) каналы (приборы) для обслуживания.

    Примерами СМО являются кассы, АЗС, аэропорты, продавцы, парикмахеры, врачи, телефонные станции и другие объекты, в которых осуществляется обслуживание тех или иных заявок.

    Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО и рациональной организации их работы с целью обеспечения высокой эффективности обслуживания при оптимальных затратах.

    Главная особенность задач данного класса – явная зависимость результатов анализ и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит и времени их исполнения).

    Предмет теории массового обслуживания – это установление зависимости между характером потока заявок, производительностью отдельного канала обслуживания, числом каналов и эффективностью обслуживания.

    В качестве характеристик СМО рассматриваются:

    • средний процент заявок, получающих отказ и покидающих систему не обслуженными;
    • среднее время «простоя» отдельных каналов и системы в целом;
    • среднее время ожидания в очереди;
    • вероятность того, что поступившая заявка будет немедленно обслужена;
    • закон распределения длины очереди и другие.

    Добавим, что заявки (требования) поступают в СМО случайным образом (в случайные моменты времени), с точками сгущения и разрежения. Время обслуживания каждого требования также является случайным, после чего канал обслуживания освобождается и готов к выполнению следующего требования. Каждая СМО, в зависимости от числа каналов и их производительности, обладает некоторой пропускной способностью. Пропускная способность СМО может быть абсолютной (среднее число заявок, обслуживаемых в единицу времени) и относительной (среднее отношение числа обслуженных заявок к числу поданных).

    3.1 Модели систем массового обслуживания.

    Каждую СМО может характеризовать выражением: (a / b / c) : (d / e / f) , где

    a - распределение входного потока заявок;

    b - распределение выходного потока заявок;

    c – конфигурация обслуживающего механизма;

    d – дисциплина очереди;

    e – блок ожидания;

    f – емкость источника.

    Теперь рассмотрим подробнее каждую характеристику.

    Входной поток заявок – количество поступивших в систему заявок. Характеризуется интенсивностью входного потока l .

    Выходной поток заявок – количество обслуженных системой заявок. Характеризуется интенсивностью выходного потока m .

    Конфигурация системы подразумевает общее число каналов и узлов обслуживания. СМО может содержать:

    1. один канал обслуживания (одна взлетно-посадочная полоса, один продавец);
    2. один канал обслуживания, включающий несколько последовательных узлов (столовая, поликлиника, конвейер);
    3. несколько однотипных каналов обслуживания, соединенных параллельно (АЗС, справочная служба, вокзал).

    Таким образом, можно выделить одно- и многоканальные СМО.

    С другой стороны, если все каналы обслуживания в СМО заняты, то подошедшая заявка может остаться в очереди, а может покинуть систему (например, сбербанк и телефонная станция). В этом случае мы говорим о системах с очередью (ожиданием) и о системах с отказами.

    Очередь – это совокупность заявок, поступивших в систему для обслуживания и ожидающих обслуживания. Очередь характеризуется длиной очереди и ее дисциплиной.

    Дисциплина очереди – это правило обслуживания заявок из очереди. К основным типам очереди можно отнести следующие:

    1. ПЕРППО (первым пришел – первым обслуживаешься) – наиболее распространенный тип;
    2. ПОСППО (последним пришел – первым обслуживаешься);
    3. СОЗ (случайный отбор заявок) – из банка данных.
    4. ПР – обслуживание с приоритетом.

    Длина очереди может быть

    • неограничена – тогда говорят о системе с чистым ожиданием;
    • равна нулю – тогда говорят о системе с отказами;
    • ограничена по длине (система смешанного типа).

    Блок ожидания – «вместимость» системы – общее число заявок, находящихся в системе (в очереди и на обслуживании). Таким образом, е=с+ d .

    Емкость источника , генерирующего заявки на обслуживание – это максимальное число заявок, которые могут поступить в СМО. Например, в аэропорту емкость источника ограничена количеством всех существующих самолетов, а емкость источника телефонной станции равна количеству жителей Земли, т.е. ее можно считать неограниченной.

    Количество моделей СМО соответствует числу всевозможных сочетаний этих компонент.

    3.2 Входной поток требований.

    С каждым отрезком времени [a , a + T ], свяжем случайную величину Х , равную числу требований, поступивших в систему за время Т .

    Поток требований называется стационарным , если закон распределения не зависит от начальной точки промежутка а , а зависит только от длины данного промежутка Т . Например, поток заявок на телефонную станцию в течение суток (Т =24 часа) нельзя считать стационарным, а вот с 13 до 14 часов (Т =60 минут) – можно.

    Поток называется без последействия , если предыстория потока не влияет на поступления требований в будущем, т.е. требования не зависят друг от друга.

    Поток называется ординарным , если за очень короткий промежуток времени в систему может поступить не более одного требования. Например, поток в парикмахерскую – ординарный, а в ЗАГС – нет. Но, если в качестве случайной величины Х рассматривать пары заявок, поступающих в ЗАГС, то такой поток будет ординарным (т.е. иногда неординарный поток можно свести к ординарному).

    Поток называется простейшим , если он стационарный, без последействия и ординарный.

    Основная теорема. Если поток – простейший, то с.в. Х [ a . a + T ] распределена по закону Пуассона, т.е. .

    Следствие 1 . Простейший поток также называется пуассоновским.

    Следствие 2 . M (X )= M [ a , a + T ] )= l T , т.е. за время Т l T заявок. Следовательно, за одну единицу времени в систему поступает в среднем l заявок. Эта величина и называется интенсивностью входного потока.

    Рассмотрим ПРИМЕР.

    В ателье поступает в среднем 3 заявки в день. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.

    Решение.

    По условию задачи, l =3, Т =2 дня, входной поток пуассоновский, n ³5. при решении удобно ввести противоположное событие, состоящее в том, что за время Т поступит меньше 5 заявок. Следовательно, по формуле Пуассона, получим

    ^

    3.3 Состояние системы. Матрица и граф переходов.

    В случайный момент времени СМО переходит из одного состояния в другое: меняется число занятых каналов, число заявок и очереди и пр. Таким образом, СМО с n каналами и длиной очереди, равной m , может находиться в одном из следующих состояний:

    Е 0 – все каналы свободны;

    Е 1 – занят один канал;

    Е n – заняты все каналы;

    Е n +1 – заняты все каналы и одна заявка в очереди;

    Е n + m – заняты все каналы и все места в очереди.

    Аналогичная система с отказами может находиться в состояниях E 0 E n .

    Для СМО с чистым ожиданием существует бесконечное множество состояний. Таким образом, состояниеE n СМО в момент времени t – это количество n заявок (требований), находящихся в системе в данный момент времени, т.е. n = n (t ) – случайная величина, E n (t ) – исходы этой случайной величины, а P n (t ) – вероятность пребывания системы в состоянии E n .

    С состоянием системы мы уже знакомы. Отметим, что не все состояния системы равнозначны. Состояние системы называется источником , если система может выйти из этого состояния, но не может в него вернуться. Состояние системы называется изолированным, если система не может выйти из этого состояния или в него войти.

    Для наглядности изображения состояний системы используют схемы (так называемые графы переходов), в которых стрелки указывают возможные переходы системы из одного состояния в другое, а также вероятности таких переходов.

    Рисунок 3.1 – граф переходов

    Сост. Е 0 Е 1 Е 2
    Е 0 Р 0,0 Р 0,1 Р 0,2
    Е 1 Р 1,0 Р 1,1 Р 1,2
    Е 2 Р 2,0 Р 2,2 Р 2,2

    Также иногда удобно воспользоваться матрицей переходов. При этом первый столбец означает исходные состояния системы (текущие), а далее приведены вероятности перехода из этих состояний в другие.

    Так как система обязательно перейдет из одного

    состояния в другое, то сумма вероятностей в каждой строке всегда равна единице.

    3.4 Одноканальные СМО.

    3.4.1 Одноканальные СМО с отказами.

    Будем рассматривать системы, удовлетворяющие требованиям:

    (Р/Е/1):(–/1/¥) . Предположим также, что время обслуживания требования не зависит от количества требований, поступивших в систему. Здесь и далее «Р» означает, что входной поток распределен по закону Пуассона, т.е. простейший, «Е» означает, что выходной поток распределен по экспоненциальному закону. Также здесь и далее основные формулы даются без доказательства.

    Для такой системы возможно два состояния: Е 0 – система свободна и Е 1 – система занята. Составим матрицу переходов. Возьмем D t – бесконечно малый промежуток времени. Пусть событие А состоит в том, что в систему за время D t поступило одно требование. Событие В состоит в том, что за время D t обслужено одно требование. Событие А i , k – за время D t система перейдет из состояния E i в состояние E k . Так как l – интенсивность входного потока, то за время D t в систему в среднем поступает l*D t требований. То есть, вероятность поступления одного требования Р(А)= l* D t , а вероятность противоположного событияР(Ā)=1- l*D t . Р(В)= F (D t )= P (b < D t )=1- e - m D t = m D t – вероятность обслуживания заявки за время D t . Тогда А 00 – заявка не поступит или поступит, но будет обслужена. А 00 =Ā+А* В. Р 00 =1- l*D t . (мы учли, что(D t ) 2 – бесконечно малая величина)

    А 01 – заявка поступит, но не будет обслужена. А 01 =А* . Р 01 = l*D t .

    А 10 – заявка будет обслужена и новой не будет. А 10 =В* Ā. Р 10 = m*D t .

    А 11 – заявка не будет обслужена или поступит новая, которая еще не обслужена. А 11 =* А. Р 01 =1- m*D t .

    Таким образом, получим матрицу переходов:

    Сост. Е 0 Е 1
    Е 0 1-l* Dt l* Dt
    Е 1 m* Dt 1-m* Dt

    Вероятность простоя и отказа системы.

    Найдем теперь вероятность нахождения системы в состоянии Е 0 в любой момент времени t (т.е. р 0 ( t ) ). График функции
    изображен на рисунке 3.2.

    Асимптотой графика является прямая
    .

    Очевидно, начиная с некоторого момента t ,


    1

    Рисунок 3.2

    Окончательно получим, что
    и
    , где р 1 (t ) – вероятность того, что в момент времени t система занята (т.е. находится в состоянии Е 1 ).

    Очевидно, что в начале работы СМО протекающий процесс не будет стационарным: это будет «переходный», нестационарный режим. Спустя некоторое время (которое зависит от интенсивностей входного и выходного потока) этот процесс затухнет и система перейдет в стационарный, установившийся режим работы, и вероятностные характеристики уже не будут зависеть от времени.

    Стационарный режим работы и коэффициент загрузки системы.

    Если вероятность нахождения системы в состоянии Е k , т.е. Р k (t ), не зависит от времени t , то говорят, что в СМО установился стационарный режим работы. При этом величина
    называется коэффициентом загрузки системы (или приведенной плотностью потока заявок). Тогда для вероятностейр 0 (t ) ир 1 (t ) получаем следующие формулы:
    ,
    . Можно также сделать вывод:чем больше коэффициент загрузки системы, тем больше вероятность отказа системы (т.е. вероятность того, что система занята).

    На автомойке один блок для обслуживания. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти вероятность того, что подъехавший автомобиль найдет систему занятой, если СМО работает в стационарном режиме.

    Решение. По условию задачи, l =5, m y =5/6. Надо найти вероятность р 1 – вероятность отказа системы.
    .

    3.4.2 Одноканальные СМО с неограниченной длиной очереди.

    Будем рассматривать системы, удовлетворяющие требованиям: (Р/Е/1):(d/¥/¥). Система может находиться в одном из состояний E 0 , …, E k , … Анализ показывает, что через некоторое время такая система начинает работать в стационарном режиме, если интенсивность выходного потока превышает интенсивность входного потока (т.е. коэффициент загрузки системы меньше единицы). Учитывая это условие, получим систему уравнений

    решая которую найдем, что . Таким образом, при условии, что y <1, получим
    Окончательно,
    и
    – вероятность нахождения СМО в состоянии Е k в случайный момент времени.

    Средние характеристики системы.

    За счет неравномерного поступления требований в систему и колебания времени обслуживания, в системе образуется очередь. Для такой системы можно исследовать:

    • n – количество требований, находящихся в СМО (в очереди и на обслуживании);
    • v – длину очереди;
    • w – время ожидания начала обслуживания;
    • w 0 – общее время нахождения в системе.

    Нас будут интересовать средние характеристики (т.е. берем математическое ожидание от рассматриваемых случайных величин, и помним, что y <1).

    – среднее число заявок в системе.

    – средняя длина очереди.

    – среднее время ожидания начала обслуживания, т.е. время ожидания в очереди.

    – среднее время, которое заявка проводит в системе – в очереди и на обслуживании.

    На автомойке один блок для обслуживания и есть место для очереди. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти все средние характеристики СМО.

    Решение. l =5, m =60мин/10мин = 6. Коэффициент загрузки y =5/6. Тогда среднее число автомобилей в системе
    , средняя длина очереди
    , среднее время ожидания начала обслуживания
    часа = 50 мин, и, наконец, среднее время нахождения в системе
    час.

    3.4.3 Одноканальные СМО смешанного типа.

    Предположим, что длина очереди составляет m требований. Тогда, для любого s £ m , вероятность нахождения СМО в состоянии Е 1+ s , вычисляется по формуле
    , т.е. одна заявка обслуживается и еще s заявок – в очереди.

    Вероятность простоя системы равна
    ,

    а вероятность отказа системы -
    .

    Даны три одноканальные системы, для каждой l =5, m =6. Но первая система – с отказами, вторая – с чистым ожиданием, а третья – с ограниченной длиной очереди, m =2. Найти и сравнить вероятности простоя этих трех систем.

    Решение. Для всех систем коэффициент загрузки y =5/6. Для системы с отказами
    . Для системы с чистым ожиданием
    . Для системы с ограниченной длиной очереди
    . Вывод очевиден: чем больше заявок находится в очереди, тем меньше вероятность простоя системы.

    3.5 Многоканальные СМО.

    3.5.1 Многоканальные СМО с отказами.

    Будем рассматривать системы (Р/Е/s):(-/s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Многоканальные системы, помимо коэффициента загрузки, можно также характеризовать коэффициентом
    , где s – число каналов обслуживания. Исследуя многоканальные СМО, получим следующие формулы (формулы Эрлáнга ) для вероятности нахождения системы в состоянии Е k в случайный момент времени:

    , k=0, 1, …

    Функция стоимости.

    Как и для одноканальных систем, увеличение коэффициента загрузки ведет к увеличению вероятности отказа системы. С другой стороны, увеличение количества линий обслуживания ведет к увеличению вероятности простоя системы или отдельных каналов. Таким образом, необходимо найти оптимальное количество каналов обслуживания данной СМО. Среднее число свободных линий обслуживания можно найти по формуле
    . Введем С(s ) – функцию стоимости СМО, зависящую от с 1 – стоимости одного отказа (штрафа за невыполненную заявку) и от с 2 – стоимости простоя одной линии за единицу времени.

    Для поиска оптимального варианта надо найти (и это можно сделать) минимальное значение функции стоимости: С(s ) = с 1* l * p s 2* , график которой представлен на рисунке 3.3:

    Рисунок 3.3

    Поиск минимального значения функции стоимости состоит в том, что мы находим ее значения сначала дляs =1, затем для s =2, потом для s =3, и т.д. до тех пор, пока на каком-то шаге значение функции С(s ) не станет больше предыдущего. Это и означает, что функция достигла своего минимума и начала расти. Ответом будет то число каналов обслуживания (значение s ), для которого функция стоимости минимальна.

    ПРИМЕР.

    Сколько линий обслуживания должна содержать СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 7 тыс.руб., стоимость простоя одной линии – 2 тыс.руб. в час?

    Решение. y = 2/1=2. с 1 =7, с 2 =2.

    Предположим, что СМО имеет два канала обслуживания, т.е. s =2. Тогда
    . Следовательно, С(2) = с 1 *l* p 2 2 *(2- y* (1-р 2 )) = =7*2*0.4+2*(2-2*0.6)=7.2.

    Предположим, что s =3. Тогда
    , С(3) = с 1 *l* p 3 2 *
    =5.79.

    Предположим, что имеется четыре канала, т.е. s =4. Тогда
    ,
    , С(4) = с 1 *l* p 4 2 *
    =5.71.

    Предположим, что СМО имеет пять каналов обслуживания, т.е. s =5. Тогда
    , С(5) = 6.7 – больше предыдущего значения. Следовательно, оптимальное число каналов обслуживания – четыре.

    3.5.2 Многоканальные СМО с очередью.

    Будем рассматривать системы (Р/Е/s):(d/d+s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Будем говорить, что в системе установилсястационарный режим работы , если среднее число поступающих требований меньше среднего числа требований, обслуженных на всех линиях системы, т.е. l

    P(w>0) – вероятность ожидания начала обслуживания,
    .

    Последняя характеристика позволяет решать задачу об определении оптимального числа каналов обслуживания с таким расчетом, чтобы вероятность ожидания начала обслуживания была меньше заданного числа. Для этого достаточно просчитать вероятность ожидания последовательно при s =1, s =2, s =3 и т.д.

    ПРИМЕР.

    СМО – станция скорой помощи небольшого микрорайона. l =3 вызова в час, а m = 4 вызова в час для одной бригады. Сколько бригад необходимо иметь на станции, чтобы вероятность ожидания выезда была меньше 0.01?

    Решение. Коэффициент загрузки системы y =0.75. Предположим, что в наличие имеется две бригады. Найдем вероятность ожидания начала обслуживания при s =2.
    ,
    .

    Предположим наличие трех бригад, т.е. s =3. По формулам получим, что р 0 =8/17, Р(w >0)=0.04>0.01 .

    Предположим, что на станции четыре бригады, т.е. s =4. Тогда получим, что р 0 =416/881, Р(w >0)=0.0077<0.01 . Следовательно, на станции должно быть четыре бригады.

    3.6 Вопросы для самоконтроля

    1. Предмет и задачи теории массового обслуживания.
    2. СМО, их модели и обозначения.
    3. Входной поток требований. Интенсивность входного потока.
    4. Состояние системы. Матрица и граф переходов.
    5. Одноканальные СМО с отказами.
    6. Одноканальные СМО с очередью. Характеристики.
    7. Стационарный режим работы. Коэффициент загрузки системы.
    8. Многоканальные СМО с отказами.
    9. Оптимизация функции стоимости.
    10. Многоканальные СМО с очередью. Характеристики.

    3.7 Упражнения для самостоятельной работы

    1. Закусочная на АЗС имеет один прилавок. Автомобили прибывают в соответствии с пуассоновским распределением, в среднем 2 автомобиля за 5 минут. Для выполнения заказа в среднем достаточно 1.5 минуты, хотя продолжительность обслуживания распределена по экспоненциальному закону. Найти: а) вероятность простоя прилавка; b) средние характеристики; c) вероятность того, что количество прибывших автомобилей будет не менее 10.
    2. Рентгеновский аппарат позволяет обследовать в среднем 7 человек в час. Интенсивность посетителей составляет 5 человек в час. Предполагая стационарный режим работы, определить средние характеристики.
    3. Время обслуживания в СМО подчиняется экспоненциальному закону,
      m = 7требований в час. Найти вероятность того, что а) время обслуживания находится в интервале от 3 до 30 минут; b) требование будет обслужено в течение одного часа. Воспользоваться таблицей значений функции е х .
    4. В речном порту один причал, интенсивность входного потока – 5 судов в день. Интенсивность погрузочно-разгрузочных работ – 6 судов в день. Имея в виду стационарный режим работы, определить все средние характеристики системы.
    5. l =3, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 2?
    6. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =3, m =1, штраф за каждый отказ равен 7, а стоимость простоя одной линии равна 3?
    7. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =4, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 1?
    8. Определить число взлетно-посадочных полос для самолетов с учетом требования, что вероятность ожидания должна быть меньше, чем 0.05. При этом интенсивность входного потока 27 самолетов в сутки, а интенсивность их обслуживания – 30 самолетов в сутки.
    9. Сколько равноценных независимых конвейерных линий должен иметь цех, чтобы обеспечить ритм работы, при котором вероятность ожидания обработки изделий должна быть меньше 0.03 (каждое изделие выпускается одной линией). Известно, что интенсивность поступления заказов 30 изделий в час, а интенсивность обработки изделия одной линией – 36 изделий в час.
    10. Непрерывная случайная величина Х распределена по показательному закону с параметром l=5. Найти функцию распределения, характеристики и вероятность попадания с.в. Х в интервал от 0.17 до 0.28.
    11. Среднее число вызовов, поступающих на АТС за одну минуту, равно 3. Считая поток пуассоновским, найти вероятность того, что за 2 минуты поступит: а) два вызова; б) меньше двух вызовов; в) не менее двух вызовов.
    12. В ящике 17 деталей, из которых 4 – бракованные. Сборщик наугад извлекает 5 деталей. Найти вероятность того, что а) все извлеченные детали – качественные; б) среди извлеченных деталей 3 бракованных.
    13. Сколько каналов должна иметь СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 8т.руб., стоимость простоя одной линии – 2т.руб. в час?


    Поделиться