Подводный аппарат мир. Глубоководные обитаемые аппараты МИР (9 фото)

Глубоководные обитаемые аппараты «Мир-1» и «Мир-2»

Глубоководные обитаемые аппараты «Мир-1» и «Мир-2» были построены в Финляндии на фирме «Раума Репола» по совместному советско-финскому проекту. Строительство аппаратов началось в мае 1985 года и закончилось в ноябре 1987 года. В декабре 1987 г. аппараты были испытаны в Атлантическом океане на глубинах 6170 м и 6120 м соответственно. В течение 20 лет эксплуатации с помощью аппаратов «Мир» выполнялся широкий спектр глубоководных операций. Был проведен большой объем научных исследований в различных районах Мирового океана. Главным направлением исследований было изучение гидротермальных полей на дне океана. Аппараты работали в 20 районах с гидротермальными полями в Тихом, Атлантическом и Северном Ледовитом океанах. Большой объем археологических исследований выполнен на затонувших объектах, таких как «Титаник» (3500 м), «Бисмарк» (4700 м), японская подводная лодка времен Второй мировой войны «I-52» (5400 м) и других. С помощью аппаратов производились глубоководные кино– и видеосъемки для художественных и научно-популярных фильмов. Было выпущено более 10 кинофильмов, наиболее известным из которых является знаменитый «Титаник» Джеймса Камерона.

Особое место в истории «Миров» занимают работы на затонувших атомных подводных лодках «Комсомолец» и «Курск», при обследовании которых решался широкий круг научных и подводно-технических задач. К настоящему моменту каждый из аппаратов «Мир» совершил более 400 погружений, 70 % из которых были совершены на глубины между 3000 и 6000 м. Аппараты показали себя как высоконадежные технические средства, способные решать практически любые задачи в глубинах океана. Однако до настоящего времени аппараты «Мир» никогда не работали под сплошным ледовым покровом. Конечно, решение этой задачи требовало и некоторой модернизации аппаратов, и разработки нового оборудования, которое позволило бы успешно провести такого рода погружения. Прежде чем перейти к изложению материала о погружениях на Северном полюсе, целесообразно рассмотреть вопросы, связанные с конструктивными особенностями «Миров» и с теми инновациями, которые были внедрены для выполнения весьма непростой задачи спуска на дно Северного полюса. Глубоководные обитаемые аппараты многие зарубежные специалисты называют минисубмаринами. Очевидно, это обусловлено некоторым их сходством с большими подводными лодками как по устройству, так и по методу эксплуатации – в режиме свободного плавания под водой без жестких или гибких связей (типа кабелей или тросов) с поверхностью или с судном обеспечения. Безопасность пребывания человека на большой глубине обеспечивает прежде всего прочный корпус; остальные элементы и системы аппарата предназначены для доставки прочного корпуса на заданную глубину, передвижения под водой и возвращения обратно на поверхность. В качестве источника энергии на большинстве современных ГОА используются аккумуляторные батареи. Прочный корпус, отдельные конструктивные элементы и базовые узлы систем объединяются связующей рамой в единую конструкцию, которая закрывается сверху легким корпусом, который обычно изготавливается из стеклопластика и придает аппарату обтекаемую форму. Такова общая конструктивная схема устройства обитаемого аппарата.


Конструкция глубоководного обитаемого аппарата «Мир»


глубина погружения 6000 м

экипаж 3 чел.

скорость 5 узлов

вес 18,6 т

размеры 7,8 х 3,2 х 3,0 м




1 обитаемая сфера

2 легкий корпус

3 балластные сферы

4 манипуляторы

5 выдвижные приборные штанги

6 мощные светильники

7 теле-, фотокамеры на поворотном устройстве

8 опорные лыжи

9 бункер с никелевой дробью (аварийный балласт)

10 боковой двигатель

11 насос высокого давления для откачивания водяного балласта

12 гидравлическая станция с электроприводом

13 боксы с аккумуляторами 120 вольт

14 боксы с аккумуляторы 24 вольта

15 главный двигатель

16 насадка главного двигателя

17 крыло

18 аварийный буй

Из книги А.М.Сагалевича «Глубина». «Научный мир», 2002 г.


Необходимо отметить, что очень часто глубоководные обитаемые аппараты называют батискафами. Однако это неверно. Батискафы были первым поколением автономных обитаемых аппаратов. На батискафах в качестве плавучего материала использовалась легкая жидкость – бензин. Батискаф имел огромный поплавок, в который перед погружением закачивалось до 200 тонн бензина, который в процессе погружения замещался водой и батискаф приобретал отрицательную плавучесть. По окончании работ на дне с батискафа сбрасывался твердый балласт (как правило, стальная дробь), и он начинал всплывать. В глубоководных обитаемых аппаратах в качестве плавучего материала используется твердый плавучий материал синтактик, основой которого являются стеклянные микрошарики, соединенные эпоксидной смолой в единое целое. Синтактик изготавливается в виде блоков, им может придаваться различная форма при отливке. Благодаря применению синтактика ГОА имеют небольшие габариты и вес и могут транспортироваться к месту погружения на борту научно-исследовательских судов. К настоящему моменту в мире имеется всего четыре ГОА, способных погружаться на глубину 6000 м: один во Франции («Наутилус»), один в Японии («Шинкай-6,5») и два в России – «Мир-1» и «Мир-2». Рассмотрим кратко конструкцию аппаратов «Мир». Прочный корпус ГОА «Мир» сделан из стали с высоким содержанием никеля. Две полусферы, изготовленные способом литья и прошедшие механическую обработку, соединены с помощью болтов. Сфера имеет три иллюминатора: центральный, внутренним диаметром 200 мм, и два боковых, диаметром 120 мм. Иллюминаторы обеспечивают хороший обзор при работе под водой. В качестве источника энергии используются никель-кадмиевые аккумуляторы, которые заменили применявшиеся первоначально железо-никелевые. Общий энергетический запас аппарата «Мир» составляет 100 кВт/час. Аппарат имеет три балластные системы.




Система главного балласта состоит из двух емкостей, изготовленных из стеклопластика. Общая их емкость – 1500 литров. При погружении аппарата емкости заполняются водой, благодаря чему его плавучесть становится близкой к нейтральной. Дальнейшая балластировка производится с помощью системы тонкого балласта, которая позволяет регулировать плавучесть в широких пределах, давая возможность погружаться и всплывать со скоростью до 35–40 м/мин и зависать на любом горизонте в толще воды. При всплытии на поверхность емкости системы главного балласта продуваются воздухом, придавая аппарату плавучесть +1500 кг и обеспечивая нормальную ватерлинию на волне. Система тонкой балластировки состоит из трех прочных сфер – двух носовых и одной кормовой – общей емкостью 999 литров. В ходе погружения аппарата в эти сферы принимается вода, которая позволяет регулировать его плавучесть. Для придания аппарату положительной плавучести вода из прочных сфер откачивается с помощью специальных насосов высокого давления.




Таким образом, аппараты «Мир» работают полностью на водяном балласте, в отличие от зарубежных глубоководных аппаратов, которые продолжают частично использовать принципы батискафов, т. е. сброс твердого балласта в виде чугунных чушек или мешков с песком. Насосы высокого давления снабжены гидравлическими приводами. Аппараты имеют три системы гидравлики. Первая, мощностью 15 кВт, управляет основным насосом высокого давления и движительным комплексом аппарата. Энергия аккумуляторных батарей преобразуется с помощью специального инвертора в энергию переменного тока, которым питается электродвигатель – привод гидравлической помпы. Управление насосом высокого давления и движительным комплексом осуществляется через систему клапанов, расположенных снаружи в масляной коробке и управляемых пилотом изнутри обитаемой сферы. Вторая система гидравлики устроена по аналогичной схеме, но имеет меньшую мощность – 5 кВт. Она управляет всеми внешними выдвижными устройствами: манипуляторами, штангами, бункерами и т. д., дифферентным насосом, перекачивающим водяной балласт из носовых сфер в кормовую и обратно, обеспечивая тем самым нужный угол дифферента аппарата. Кроме того, вторая гидравлическая система управляет вторым насосом высокого давления, который используется как аварийный: в случае отказа основного насоса или первой системы гидравлики второй насос позволяет откачать водяной балласт и обеспечить всплытие аппарата на поверхность. Третья система гидравлики аварийная, она дает возможность осуществить сброс некоторых частей аппарата в случае возникновения аварийной ситуации. Приводом гидравлической помпы в этой системе служит электродвигатель постоянного тока, который питается напрямую от основных аккумуляторов аппарата или от аварийной батареи. Необходимо отметить, что сброс отдельных элементов аппарата в случае аварийной ситуации может производиться и от второй системы гидравлики. С аппарата «Мир» могут быть сброшены следующие элементы.



Прежде всего, это выступающие части конструкции (которыми аппарат может зацепиться на дне за тросы, кабели и т. д.): главный и боковые движители; крыло; кисти манипуляторов (в случае если что-то взято в кисть, а механизм ее разжимания не работает); аварийный буй, выходящий после отдачи от аппарата на поверхность на тонком нейлоновом тросике длиной 8000 метров; кроме того, может быть сброшен нижний аккумуляторный бокс основной батареи весом около 1000 кг. На аппаратах «Мир» имеется также система аварийного балласта (выше упомянута как третья балластная). В двух жестких стеклопластиковых контейнерах находится 300 кг никелевой дроби, удерживаемой электромагнитами, снятие напряжения с которых позволяет частично или полностью сбросить дробь и придать аппарату положительную плавучесть. Важной частью аппаратов является движительный комплекс. Главный кормовой движитель мощностью 12 кВт управляет движением в горизонтальной плоскости, обеспечивая повороты аппарата в пределах ±60°. Два боковых движителя мощностью 3,5 кВт каждый имеют поворотное устройство, которое позволяет поворачивать их в вертикальной плоскости в пределах 180°; благодаря этому возможно осуществлять вертикальное перемещение аппарата во время его движения вперед на главном движителе, а также – в горизонтальной плоскости в случае отказа главного движителя. Такое устройство комплекса обеспечивает гибкое управление аппаратом, придавая ему хорошую маневренность, что очень важно при работе у дна в условиях сложного рельефа или на донных объектах сложной конфигурации. Внутри обитаемой сферы во время погружения поддерживаются нормальное атмосферное давление и газовый состав воздуха. Система жизнеобеспечения включает кислородные баллоны с дозаторами, через которые атмосфера внутри сферы пополняется кислородом, и сборник углекислого газа со сменными кассетами, заполненными поглотителем СО 2 (обычно гидрат окиси лития или калия). Вентиляторы постоянно прогоняют воздух через поглотитель углекислого газа, а также через специальный фильтр вредных примесей, заполненный активированным углем и палладием. Таким образом осуществляется очистка атмосферы в кабине. Контроль за содержанием в ней различных компонентов производится с помощью специальных индикаторов, показывающих процентное содержание в атмосфере кислорода, двуокиси и окиси углерода. Имеются также мониторы давления, температуры и влажности внутри кабины. ГОА «Мир» оснащены современными средствами подводной навигации. Она позволяет определять точное положение аппарата под водой относительно донных гидроакустических маяков, постановка и калибровка которых осуществляется с борта судна по данным системы спутниковой навигации. Пилот может наблюдать траекторию движения аппарата под водой на дисплее, что создает несомненные удобства управления им при поисковых операциях, выходе на донные объекты и т. д. Система подводной гидроакустической связи обеспечивает беспроводную голосовую связь с судном на расстоянии до 10 миль. Гидролокационные средства позволяют вести поиск на дне мелких предметов размером до первых десятков сантиметров. Аппараты оборудованы гидрофизическими и гидрохимическими датчиками, специальными устройствами для отбора образцов и другой научной аппаратурой. Два идентичных манипулятора (правый и левый) с семью степенями свободы дают возможность отбирать различные образцы – от весьма хрупких до больших и тяжелых весом около 80 кг. ГОА «Мир» снабжены современной видеоаппаратурой для подводных видеосъемок, а также подводными фотосистемами. Аппараты оборудованы наружным свето– и радиомаяками, которые позволяют обнаруживать их на поверхности после всплытия: система радиопоиска на судне обеспечения принимает сигналы от радиомаяка и указывает направление на точку всплытия аппарата. Погружения на Северном полюсе под сплошной ледовый покров требовали специальной подготовки аппаратов «Мир»: модернизации некоторых систем, разработки нового оборудования, которое обеспечило бы выход ГОА из-под ледовой крыши в небольшую полынью на поверхности океана.

January 27th, 2014

Я вчера вам рассказывал о том, что и это вызвало неоднозначную реакцию. Звучали такие выражения, как «… а вот раньше наши батискафы к Титанику опускались». Оказывается мало кто знал, что «Миры» были построены в Финляндии по заказу СССР.

«Мир» - серия российских научно-исследовательских подводных глубоководных обитаемых аппаратов (ГОА) для океанологических исследований и спасательных работ. Имеют глубину погружения до 6 км. Базируются на борту научно- исследовательского судна «Академик Мстислав Келдыш».

Давайте узнаем про них подробнее …

Глубоководные обитаемые аппараты (ГОА) «Мир-1″ и «Мир-2″ были построены в Финляндии фирмой Rauma‑Repola в 1987 году. Идея аппаратов и начальный проект были проработаны в АН СССР и КБ «Лазурит». Аппараты создавались под научно-техническим руководством ученых и инженеров Института океанологии РАН имени П.П.Ширшова.

Создание аппаратов было начато в мае 1985 года и закончено в ноябре 1987 года. В декабре 1987 года были проведены глубоководные испытания аппаратов в Атлантике на глубине 6170 метров («Мир-1″) и 6120 метров («Мир-2″). Аппараты были установлены на судне обеспечения “Академик Мстислав Келдыш”, построенном в 1981 году в Финляндии и переоборудованном в 1987 году для проведения работ с глубоководными испытательными аппаратами.

ГОА «Мир 1″ и «Мир 2″ идентичны по конструкции и рассчитаны на рабочую глубину погружения 6000 м. Общая емкость аккумуляторных батарей одного аппарата составляет 100 кВт/ч, что позволяет выполнять подводные операции в течение 17 20 часов непрерывного подводного цикла. Кроме того, это позволяет устанавливать на оба аппарата большой комплекс научного и навигационного оборудования.

Подводная скорость аппарата «Мир» равна 5 узлам. Для балластировки у него используется водяной балласт. Перед уходом аппарата с поверхности морская вода заполняет пластиковые цистерны главного балласта емкостью 1,5 куб. м, которые продуваются сжатым воздухом, когда аппарат выходит на поверхность после погружения. Плавучесть аппарата регулируется с помощью системы переменного балласта путем приема воды в три прочные сферы и откачки ее из сфер насосом высокого давления.

Корпус аппаратов изготовлен из мартенситовой, сильно легированной стали, с 18 % никеля. Сплав имеет предел текучести - 150 кг на квадратный мм (у титана - около 79 кг/ кв.мм). Производитель: финская фирма «Локомо», входящая в состав концерна «Раума Репола». Размещение экипажа Экипаж ГОА «Мир» состоит из трех человек - пилота, инженера и ученого-наблюдателя.

Длина аппарата «Мир» 7,8 м, ширина (с боковыми двигателями) 3,8 м, высота 3 м. Обзор из обитаемой сферы аппаратов «Мир» обеспечивается тремя иллюминаторами: центральным, имеющим внутренний диаметр 200 мм, и двумя боковыми диаметром 120 мм. Расположение иллюминаторов дает широкий угол обзора для пилота и наблюдателей. Запас плавучести аппарата «Мир» на дне равен 290 кг. Сухой вес 18,6 т. Запас жизнеобеспечения 246 чел./час. ГОА «Мир» оснащены навигационным и научным оборудованием, фото и видеосистемами, манипуляторами, устройствами отбора проб и т. д.

Система аварийного спасения у аппарата состоит из синтактикового буя, выпускаемого экипажем, с прикреплённым к нему кевларовым тросом, длиной 7000 м, по которому опускают половину сцепки (такую же, как железнодорожная автосцепка). Она доходит до аппарата, затем происходит автоматическая сцепка, и аппарат поднимают на длинном силовом тросе, длиной 6500 м, с усилием на разрыв около десяти тонн.

По состоянию на 2008 год, в мире, кроме российских «Мир-1» и «Мир-2», существуют ещё два аппарата (построено было три). Американский аппарат «Си Клиф» (Sea Cliff) (англ. DSV Sea Cliff), который сейчас переоборудуется, французский «Нотил» (Nautile) (фр. Nautile), оба с глубиной погружения 6000 метров, и японский «Шинкай 6500» (Shinkai 6500), поставивший рекорд погружения для существующих аппаратов в 6527 метров.

С применением ГОА «Мир-1″ и «Мир-2″ проведено 35 экспедиций в Атлантический, Тихий и Индийский океаны, из них девять экспедиций по ликвидации последствий аварий атомных подводных лодок (АПЛ) «Комсомолец» и «Курск». Разработан ряд новейших глубоководных технологий и методик, что позволило осуществлять многолетний радиационный мониторинг на АПЛ «Комсомолец», которая находится на дне Норвежского моря на глубине 1700 метров, и произвести частичную герметизацию носовой части лодки. В район гибели АПЛ «Комсомолец» в Норвежском море было проведено семь экспедиций в период 1989-1998 годах.

В конце сентября 2000 аппараты использовались для обследования АПЛ «Курск». Российскими научными учреждениями разработана методика, которая позволила с помощью аппаратов «Мир» провести детальное обследование АПЛ «Курск», определить причину ее аварии и разработать меры по ликвидации последствий этой аварии.

В 1991 и 1995 годах с помощью «Миров» производились исследования корпуса «Титаника», лежащего на глубине 3800 метров. В процессе погружений были проведены уникальные киносъемки, которые были использованы для создания художественных и научно-популярных фильмов, среди которых - Titanica, Titanic, Bismarck, Aliens of the Deep, Ghost of the Abyss.

В январе-сентябре 2004

В январе-сентябре 2004 года силами Института океанологии РАН совместно с ФГУП «Факел» был проведен капитальный ремонт аппаратов «Мир» с их полной разборкой, испытаниями прочности корпусов, частичной заменой элементов, узлов и оборудования, последующей сборкой и испытаниями вновь собранных аппаратов. В результате «Мир-1″ и «Мир-2″ получили сертификат на класс от международного регистра «Германский Ллойд» до 2014 года.

2 августа 2007 года в рамках экспедиции «Арктика-2007″ был совершен первый в мире спуск глубоководных обитаемых аппаратов «Мир» в точке географического Северного полюса на глубину 4300 метров. Во время этого беспрецедентного погружения на дне был установлен титановый российский флаг и капсула с посланием будущим поколениям. Аппараты выдержали давление в 430 атмосфер. Достижения этой экспедиции занесены в книгу рекордов Гиннеса.

Арктическое погружение вызвало большой общественный резонанс, поскольку некоторые российские комментаторы высказали мнение, что Россия «застолбила» свои права на участок океанского дна между Новосибирскими островами и Северным полюсом, хотя с точки зрения международного права это действие являлось юридически ничтожным.

Погружение глубоководных обитаемых аппаратов «Мир-1″ и «Мир-2″ в точке Северного полюса — первое в истории. Эта экспедиция позволит впервые детально изучить строение дна в приполюсном районе и уточнить границы российского шельфа в районе, простирающемся от Новосибирских островов до полюса.

На самом деле одна из целей экспедиции — установить, являются ли подводные хребты Ломоносова и Менделеева, которые тянутся к Гренландии, геологическим продолжением российского континентального шельфа.

Также члены экспедиции выполнили ряд научных экспериментов, взяли пробы грунта и фауны. Кроме того, в рамках погружения на дне океана был установлен российский триколор и оставлена капсула с посланием россиян, «Сердцем Мира» — талисманом молодежной команды «Небесная Одиссея» и флагом «Единой России».

Отвечая на вопрос о задачах нынешней экспедиции российских исследователей на Северный Полюс, глава МИД РФ Сергей Лавров сказал: «Цель этой экспедиции — не застолбить права России, а доказать, что наш шельф простирается к Северному полюсу». Министр выразил надежду на то, что нынешняя экспедиция и погружение батискафа в районе Северного полюса «позволят получить дополнительные научные доказательства того, что мы собираемся добиться».

В 2008 году оба российских глубоководных аппарата закончили погружение на дно озера Байкал и благополучно поднялись на поверхность. Для первого погружения была выбрана точка недалеко от острова Ольхон, примерно в 10 км к востоку от берега Байкала между мысами Ижимей и Хара-Хушун, где озеро достигает максимальной глубины. Экспедиции повезло с погодой: если в понедельник на Байкале были шторм, двухметровые волны и непрерывный дождь, то с утра во вторник установился полный штиль и светит яркое солнце. «Мир-1» пилотирует начальник экспедиции, заведующий лабораторией научной эксплуатации глубоководных обитаемых аппаратов Института океанологии РАН, профессор Анатолий Сагалевич.

С ним на борту находятся президент Республики Бурятия Вячеслав Наговицын и председатель попечительского совета Фонда содействия сохранению озера Байкал Михаил Слипенчук. В составе второго экипажа — пилот Евгений Черняев, депутат Госдумы Владимир Груздев и директор Байкальского института природопользования РАН Арнольд Тулохонов.

Напомним, Байкал — самый глубокий на Земле внутренний водоем и самый большой резервуар пресной воды. В июне 2008 года по результатам Интернет-опроса озеро было признано одним из семи чудес России.

В августе-сентябре батискафы «Мир-1» и «Мир-2» совершили 60 погружений в различных точках Байкала. Затем экспедиция прервалась на зиму. На 2009 год было выполнено 100 погружений.

Ученые вели визуальные наблюдения, брали пробы воды на разных глубинах, изучали фауну озера и геологическую структуру дна. Кроме того, они надеялись найти в глубинах озера археологические артефакты.

По словам депутата Госдумы, известного полярника Артура Чилингарова, также участвующего в экспедиции, главное для ее участников — не рекордные погружения, а забота об экологии Байкала.

«Любое погружение — это страница в истории. Никаких рекордов мы не собираемся ставить. Мы хотим обратить внимание и рассказать, что нужно предпринять российскому государству, чтобы сохранить это озеро», — заявил ранее Чилингаров.

Премьер министр России Владимир Путин совершил погружение на дно озера 1 августа 2009 года. В общей сложности «экскурсия» на аппарате «Мир 1″ по дну Байкала заняла около 4 часов. Во время погружения Путин выходил на связь с журналистами. В тот момент «Мир 1″ находился в самой глубокой точке южной части озера 1395 метров. Путин признался журналистам, что был несколько удивлен непрозрачностью воды, назвав ее «супом из планктона».

Джеймс Кэмерон совершил погружение на дно Байкала 16 августа 2010 года в день своего рождения и провел под водой четыре с половиной часа. Максимальная глубина, на которой он оказался, составила 1380 метров.

В 2011 году российские батискафы «Мир-1» и «Мир-2» провели первое погружение на дно Женевского озера - одного из самых больших, но практически не изученных водоемов Европы. Полномасштабная программа его исследования стартовала накануне и будет продолжаться все лето. В Швейцарии и Франции хотели узнать, что скрывается под этой живописной водной гладью, и жаждут открытий.
Первыми на глубину ушли герои России Анатолий Сагалевич (он руководит экспедицией), американец Дон Волш (он был на дне Марианской впадины) и швейцарец Бертран Пикар. Для него, правда, привычнее другая стихия. Пикар - воздухоплаватель и создатель первого в мире самолета на солнечных батареях.

Батискафы достигли отметки почти в 300 метров - это максимальное значение для Женевского озера. Как сообщил Анатолий Сагалевич, на дне разглядели обломки парохода «Рона» (его крушение вековой давности унесло 15 жизней) и нескольких рыбок. Впереди было еще около сотни погружений с забором грунта и проб воды.

В течение 20 лет ГОА «Мир» совершили более 800 погружений, около 80 процентов которых были выполнены на глубинах от 3000 до 6000 метров. При этом не было ни одной аварийной ситуации. Несомненно, в этом заслуга профессиональной группы подводников Института океанологии, которые полностью обеспечивают работы ГОА «Мир» - от разработки нового оборудования, модернизации систем ГОА, проведения ремонтных и регламентных работ до пилотирования аппаратов под водой.

Характеристики глубоководных аппаратов «Мир» Рабочая глубина погружения – 6000 метров Нахождение под водой – до 80 часов Запас энергообеспечения – 100 кВт‑час Запас жизнеобеспечения – 246 чел.‑час Максимальная скорость – 5 узлов Запас плавучести (с поверхности) – 290 килограммов Сухой вес – 18,6 тонны Длина – 7,8 метра Ширина (с боковыми двигателями) – 3,8 метра Высота – 3 метра Диаметр – 2,1 м Экипаж – 3 человека Выход в верхней части Принцип работы Погружение – балластные цистерны заполняются водой Подъем – выключаются насосы, вода выкачивается Ходовой электродвигатель – питается от аккумуляторов. Скорость движения – 9 км/ч.

источники

http://sea-transport.ru/glubokovodnie-apparati/247-mir.html

http://www.ntv.ru/novosti/231185

http://ria.ru/science/20070802/70224087.html

http://for-ua.com/world/2008/07/29/165500.html

http://www.oceanology.ru/submersible-mir/

Давайте вспомним еще или например как выглядит . А вот необычная . Вспомним еще историю изучения Марианской впадины — Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

(ГОА) для океанологических исследований и спасательных работ.

В составе флота Института Океанологии РАН имени Петра Ширшова находятся два глубоководных обитаемых подводных аппарата типа "Мир": ГОА "Мир 1" и "Мир 2". Они были построены в Финляндии фирмой Rauma Repola в 1987 году. Аппараты создавались под научно техническим руководством ученых и инженеров Института океанологии РАН. Создание аппаратов было начато в мае 1985 года и закончено в ноябре 1987 года. В декабре 1987 года были проведены глубоководные испытания аппаратов в Атлантике на глубине 6170 метров ("Мир 1") и 6120 метров ("Мир 2"). Аппараты были установлены на судне обеспечения "Академик Мстислав Келдыш", построенном в 1981 году в Финляндии и переоборудованном в 1987 году для проведения работ с глубоководными испытательными аппаратами.

ГОА "Мир 1" и "Мир 2" идентичны по конструкции и рассчитаны на рабочую глубину погружения 6000 м. Общая емкость аккумуляторных батарей одного аппарата составляет 100 кВт/ч, что позволяет выполнять подводные операции в течение 17 20 часов непрерывного подводного цикла. Кроме того, это позволяет устанавливать на оба аппарата большой комплекс научного и навигационного оборудования.

одводная скорость аппарата "Мир" равна 5 узлам . Для балластировки у него используется водяной балласт. Перед уходом аппарата с поверхности морская вода заполняет пластиковые цистерны главного балласта емкостью 1,5 куб. м, которые продуваются сжатым воздухом, когда аппарат выходит на поверхность после погружения. Плавучесть аппарата регулируется с помощью системы переменного балласта путем приема воды в три прочные сферы и откачки ее из сфер насосом высокого давления.

Корпус аппаратов изготовлен из мартенситовой, сильно легированной стали, с 18% никеля. Сплав имеет предел текучести — 150 кг на кв. мм (у титана — около 79 кг/ кв.мм).

Длина аппарата "Мир" 7,8 м, ширина (с боковыми двигателями) 3,8 м, высота 3 м. Обзор из обитаемой сферы аппаратов "Мир" обеспечивается тремя иллюминаторами: центральным, имеющим внутренний диаметр 200 мм, и двумя боковыми диаметром 120 мм. Расположение иллюминаторов дает широкий угол обзора для пилота и наблюдателей. Запас плавучести аппарата "Мир" на дне равен 290 кг. Сухой вес 18,6 т. Запас жизнеобеспечения 246 чел./час. ГОА "Мир" оснащены навигационным и научным оборудованием, фото и видеосистемами, манипуляторами, устройствами отбора проб и т. д. Экипаж аппарата состоит из трех человек — пилота, инженера и ученого наблюдателя.

Система аварийного спасения у аппарата состоит из синтактикового буя, выпускаемого экипажем, с прикреплённым к нему кевларовым тросом, который изготовлен из высокопрочного углеволокна - кевлара, длиной 7000 м, по которому опускают половину сцепки (такую же, как железнодорожная автосцепка). Она доходит до аппарата, затем происходит автоматическая сцепка, и аппарат поднимают на длинном силовом тросе, длиной 6500 м, с усилием на разрыв около 10 тонн.

В 1987-2005 годах с применением ГОА "Мир 1" и "Мир 2" было проведено 35 экспедиций в Атлантический, Тихий и Индийский океаны, из них девять экспедиций по ликвидации последствий аварий атомных подводных лодок (АПЛ) "Комсомолец" и "Курск". Разработанный ряд новейших глубоководных технологий и методик, позволил осуществлять многолетний радиационный мониторинг на АПЛ "Комсомолец", которая находится на дне Норвежского моря на глубине 1700 метров, и произвести частичную герметизацию носовой части лодки. Совместно с различными российскими научными учреждениями была разработана методика, которая позволила провести детальное обследование АПЛ "Курск", определить причину ее аварии и разработать меры по ликвидации последствий этой аварии.

В 1991 и 1995 годах с помощью аппаратов "Мир" производились исследования корпуса судна "Титаник" , лежащего на глубине 3800 метров. В процессе погружений были проведены уникальные киносъемки, которые использовались для создания художественных и научно популярных фильмов, среди которых Titanica, Titanic, Bismarck, Aliens of the Deep, Ghost of the Abyss.

В погружениях в 1995 году участвовал режиссер фильмов Джеймс Кэмерон , который спускался к "Титанику" на аппарате "Мир" 12 раз.

В январе сентябре 2004 года силами Института океанологии РАН совместно с ФГУП "Факел" был проведен капитальный ремонт аппаратов "Мир" с их полной разборкой, испытаниями прочности корпусов, частичной заменой элементов, узлов и оборудования, последующей сборкой и испытаниями вновь собранных аппаратов. В результате "Мир?1" и "Мир?2" получили сертификат на класс от международного регистра "Германский Ллойд" до 2014 года.

2 августа 2007 года в рамках экспедиции "Арктика?2007" был совершен первый в мире спуск глубоководных обитаемых аппаратов "Мир" в точке географического Северного полюса на глубину 4300 метров. Во время этого беспрецедентного погружения на дне был установлен титановый российский флаг, а также взяты образцы грунта и живых организмов с глубины 4261 м. Достижения этой экспедиции были занесены в книгу рекордов Гиннеса.

В 2008-2010 годах проходила научно исследовательская экспедиция "Миры на Байкале": ученые на двух глубоководных обитаемых аппаратах "Мир 1" и "Мир 2" изучали состояние экосистемы водоема, животный и растительный миры, тектонические процессы на дне озера. Исследователи сделали ряд научных открытий, а также приблизились к разгадке одной из исторических тайн. В завершение серии погружений в 2009 году в районе Кругобайкальской железной дороги ученые обнаружили фрагменты железнодорожного вагон а, а также ящики с патронами времен Гражданской войны (1918 1921). Исследователи предположили, что это может быть поезд, на котором "белый" адмирал Колчак вывозил золото империи. В 2010 году в ходе заключительных погружений в этом же районе ученые нашли предметы, внешне напоминающие золотые слитки, но поднять находку на поверхность не удалось.

За время экспедиций "Миров" на дне Байкала побывали премьер министр РФ Владимир Путин, министр финансов Алексей Кудрин, полярник, депутат Госдумы Артур Чилингаров, губернатор Иркутской области Дмитрий Мезенцев, президент Бурятии Вячеслав Наговицын, президент Монголии Цахиагийн Элбэгдорж, рок музыкант и лидер группы "Машина времени" Андрей Макаревич, писатель Валентин Распутин, кинорежиссер, автор "Титаника" и "Аватара" Джеймс Кэмерон.

Премьер министр России Владимир Путин совершил погружение на дно озера 1 августа 2009 года . В общей сложности "экскурсия" на аппарате "Мир 1" по дну Байкала заняла около 4 часов. Во время погружения Путин выходил на связь с журналистами. В тот момент "Мир 1" находился в самой глубокой точке южной части озера 1395 метров. Путин признался журналистам, что был несколько удивлен непрозрачностью воды, назвав ее "супом из планктона".

Джеймс Кэмерон совершил погружение на дно Байкала 16 августа 2010 года в день своего рождения и провел под водой четыре с половиной часа. Максимальная глубина, на которой он оказался, составила 1380 метров.

Летом 2011 года российские глубоководные обитаемые аппараты "Мир 1" и "Мир 2" будут изучать Женевское озеро . Первые погружения планируется начать в середине июня, а закончить их в середине августа.

Материал подготовлен на основе информации РИА Новости и открытых источников

К северо-востоку от Новой Зеландии.

Аппарат успел погрузиться на глубину 9977 метров прежде, чем связь с ним прервалась. Оператор аппарата с научно-исследовательского судна Thomas G. Thompson контролировал сбор морского огурца , когда неожиданно изображение на камере пропало.

Затем была утеряна связь с системой позиционирования, которая отслеживает местоположение машины по отношению к кораблю. При таких обстоятельствах аппарат запрограммирован ждать полчаса на дне, чтобы судно могло переместиться на безопасное расстояние от его последнего известного местоположения, и только потом выныривать.

На следующий день исследователи обнаружили обломки субмарины на поверхности океана. Катастрофа произошла в 30-ый день 40-дневной экспедиции, целью которой было исследовать вторую по глубине океаническую впадину в мире. Планировалось, что аппарат Nereus до конца 2014 года совершит ещё 5 или 6 экспедиций, однако теперь все эти проекты придётся вернуть к стадии задумки.

(фото Advanced Imaging and Visualization Lab, WHOI).

Скорее всего, причиной взрыва аппарата стало огромное глубоководное давление - около 6895 паскалей. Эксперт Стив Этчеменди (Steve Etchemendy), например, уверен, что некоторые части подводных аппаратов (в том числе чувствительная электроника) должны даже на исследовательском судне всегда храниться при том же давлении, которое воздействует на них в морских глубинах. Внезапная смена условий рано или поздно приведёт к неконтролируемой поломке, уверен инженер.

Глубоководный исследователь Nereus, названный в честь древнегреческого бога морской стихии Нерея , принадлежал океанографическому институту Вудс-Хола (WHOI) и был единственным американским научно-исследовательским судном, способным работать на таких впечатляющих глубинах. Поэтому это, конечно, значимая потеря для учёных.

Стоимость Nereus, построенного в 2008 году, составляла $8 миллионов (282 миллиона рублей). В 2009 году ему удалось достичь дна самой глубокой части океана − Марианской впадины . В процессе погружения аппарат подвергался давлению, в 1000 раз превышающему атмосферное . Тогда аппаратом управляла группа американских инженеров и учёных с борта исследовательского судна Kilo Moana .


То погружение продлилось около 10 часов, и всё это время Nereus с помощью датчиков собирал научные данные, брал пробы воды и осуществлял передачу видео на поверхность. Достигнув дна Марианской впадины, аппарат взял пробы грунта и скальных пород с помощью специального манипулятора.

Потеря аппарата стала огромной утратой для научного сообщества США, ведь аппарат был единственным в своём роде. Для сравнения, батискаф DeepSea Challenger , принадлежащий кинорежиссёру Джеймсу Кэмерону (James Cameron), но он не может осуществлять погружения так часто, как это требуется для исследований.

Как известно, то, что актуально для «сегодня», уже «завтра» может устареть. Сегодня мы знаем, что современные глубоководные батискафы могут опускаться до самого дна Марианской впадины, а глубже на Земле места нет. Сегодня даже президенты опускаются в автономных аппаратах на дно, и это считается нормальным. Но… а каким образом люди пришли к батискафу или опускались на дно до его изобретения? Например, наибольшая известная в 30-ые годы прошлого века глубина океана была определена в 9790 м (около Филиппинских островов) и 9950 м (около Курильских островов). Известный советский ученый, академик В.И. Вернадский как раз в те годы высказал предположение, что животная жизнь в океанах, в заметных своих проявлениях, достигает глубины 7 км. Он утверждал, что плавающие глубоководные формы могут заходить даже в самые большие океанические глубины, хотя находки со дна глубже 5,6 км были неизвестны. Но люди уже тогда пытались опускаться на самые большие глубины и делали это при помощи так называемых камерных аппаратов, которые представляли собой на тот момент наивысшую ступень развития водолазной техники, так как позволяли человеку опуститься на такую глубину, на которую не может опуститься ни один водолаз, снабженный лучшим жестким скафандром.

Аппарат Данилевского во время поисков «Черного принца».

Конструктивно эти аппараты позволяли опуститься на любую глубину, причем глубина погружения аппарата зависела только от прочности материалов, из которых они были изготовлены, ибо без этого условия они не смогли бы выдержать возрастающего с глубиной громадного давления.

Первым конструктором такого аппарата, достигшего глубины погружения 458 м, был американский изобретатель инженер Гартман.

Построенный Гартманом аппарат для глубоководных спусков представлял собой стальной цилиндр, причем внутренний диаметр этого цилиндра был таков, что позволял поместиться в нем одному человека в сидячем положении. Для наблюдений стенки цилиндра были снабжены иллюминаторами, которые закрывались очень прочным трехслойным стеклом. Внутри аппарата, над иллюминаторами были устроены электрические лампы, отражающие свет при помощи параболических рефлекторов. Ток для лампы получался от помещенной в аппарате 12-вольтовой батареи. Аппарат был снабжен портативным автоматическим кислородным прибором, действие которого обеспечивало снабжение водолазов кислородом в течение двух часов, химическими приборами для поглощения углекислоты, небольшим телескопом и фотографическим аппаратом. Телефонное сообщение с надводной базой отсутствовало. Вообще же все устройство аппарата было довольно примитивно.

Поздней осенью 1911 года в Средиземном море, вблизи острова Альдеборан, на восток от Гибралтара, Гартман совершил свой знаменитый спуск с парохода «Ганза» на глубину 458 м., продолжительность спуска была всего 70 минут. «Когда была достигнута большая глубина, - писал Гартман, - сознание как-то сразу подсказало об опасности и примитивности аппарата, на что указывал перемежающийся треск внутри камеры наподобие пистолетных выстрелов. Сознание, что нет средств, чтобы сообщить наверх и невозможность дать тревожный сигнал, приводило в ужас. В это время давление было 735 фунтов на кв. дюйм аппарата, или полное давление высчитывалось в 4 миллиона фунтов. Не менее ужасна была мысль о возможности разрыва подъемного троса или его запутывании. В промежутках между остановками, которые действовали успокаивающе, не было никакой уверенности в том, тонет ли аппарат или его спускают. Стены камеры снова покрылись влажностью, как это бывало в предварительных опытах. Не было возможности сказать, было ли это только отпотевание или вода ужасным давлением вгонялась через поры аппарата. Скоро страхи уступили место удивлению при виде фантастических представителей животного царства. Панорама самой причудливой жизни, которую впервые наблюдал человеческий глаз, приходила при спуске. В воде, освещенной солнцем на первых тридцати футах, наблюдались движущиеся рыбы и другие существа».
Это первый глубоководный спуск закончился благополучно. Впоследствии правительство США использовало аппарат Гартмана во время Первой мировой войны для фотографирования затонувших немецких лодок и для обозначения их на картах.

В 1923 году построен сконструированный советским инженером Даниленко камерный аппарат, подобный аппарату Гартмана. Аппарат Даниленко был использован экспедицией подводных работ Черного и Азовского морей, для осмотра дна Балаклавской бухты, предпринятого в связи с поисками «Черного принца» - английского парового военного судна, затонувшего в 1854 году. Аппарат Даниленко имел цилиндрическую форму. В верхней части его были расположены один над другим два ряда иллюминаторов, предназначенных для осмотра затонувших предметов. В целях расширения поля зрения снаружи его было установлено специальное зеркало, при помощи которого в иллюминаторы отражалось изображение грунта. Аппарат этот состоял из трех «этажей». Помещение для двух наблюдателей было устроено в верхней части аппарата, куда проводились шланги для подачи свежего и удаления испорченного воздуха. Во втором «этаже» - под помещением для наблюдателей - находились механизмы, электрические приспособления, предназначенные для управления находящейся в первом «этаже» балластной цистерной. Спуск и подъем аппарата осуществлялся при помощи стального троса и продолжался (на глубину 55 м) не более 15-20 минут.

Нельзя не упомянуть также об интересном крабообразном глубоководном аппарате Рида. Аппарат этот был рассчитан на пребывание на большой глубине двух человек в течение 4 часов. Он был установлен на управляемом изнутри тракторе и мог передвигаться по дну. Аппарат Рида был сконструирован так, что люди, сидящие в нем, могли управлять двумя рычагами, при помощи которых можно было производить разные работы сверления больших (до 20 см в диаметре) отверстий в затонувшем корабле, заложение в эти отверстия подъемных гаков и др.

В 1925 году американцы предприняли глубоководное изучение Средиземного моря. Цель этой экспедиции – исследование затонувших в море городов Карфагена и Позилито, обследование затонувшей на Северном берегу Африки греческой галеры с сокровищами, с которой многие бронзовые и мраморные статуи были уже подняты до этого и были в свое время помещены в музеи Туниса и Бордо. Кроме этих извлеченных замечательных произведений древнего искусства, галера содержала еще 78 текстов, тисненых на бронзовых листах.

Камера аппарата средиземной морской экспедиции, рассчитанная на погружение до 1000 м, состояла из двустенного цилиндра, выполненного из высококачественной стали. Внутренний диаметр этой камеры – 75 см., она была рассчитана на двух человек, которые помещались один над другим. Камера была снабжена приборами для определения глубины и температуры, телефоном, компасом и электрическими грелками, кроме того, ее снабдили совершенным фотографическим аппаратом, с помощью которого можно было производить подводные съемки с такого же расстояния, на каком видит человеческий глаз. Под камерой подвешивался при помощи электромагнита тяжелый груз, который в случае аварии мог быть сброшен для того, чтобы камера всплыла на поверхность. Для вращения и наклонения камеры в воде она была снабжена двумя специальными гребными винтами. Снаружи были устроены специальные приспособления, которые позволяли исследователям вылавливать морских животных и сохранять их в воде под таким давлением, которое обеспечивало бы жизнь этим животным.


Батисфера Биба. Сам Уильям Биб слева.

Наконец последним сооружением в этой области является знаменитая сферическая батисфера американца Биба - научного сотрудника Бермудской биологической станции. Камера Биба была связана с кораблем-базой тросом, на котором она погружалась в воду, и кабелями для подачи в камеру электроэнергии и для связи с кораблем. Снабжение же исследователей, находящихся в батисфере, кислородом и удаление из последней углекислоты осуществлялось специальными автоматами. При помощи батисферы Биб совершил в 1933-1934 гг. ряд спусков, причем во время одного из них исследователю удалось достигнуть глубины 923 м.

Однако аппараты подвесного типа, связанные с кораблем-базой, имели ряд недостатков: подъем и спуск такого аппарата на большую глубину требует затраты большого количества времени и наличия на корабле-базе громоздких подъемных приспособлений. Длительность погружения аппарата на большую глубину сопряжена с возможностью катастрофы. Кроме того, камера эта, будучи подвешена к кораблю на длинном гибком тросе, будет все время, независимо от воли наблюдателей, перемещаться в воде, что сильно ухудшает условия наблюдения.

В связи с этим в СССР возникла идея постройки автономного самоходного аппарата для глубоководных спусков. Проект этот предусматривал создание гидростата, имеющего цилиндрическую форму корпуса с удлиненной осью. В верхней части аппарата должна была находиться надстройка, благодаря которой гидростат приобретал бы в надводном положении устойчивость и плавучесть. Нигде, однако, в описании проекта не было сказано, что эта «надстройка» или «поплавок» наливался бы керосином. То есть положительную плавучесть ему сообщал бы лишь внутренний объем!

Высота гидростата с надстройкой - 9150 мм, а высота одного лишь служебного помещения 2100 мм. Вес всего аппарата предполагался около 10555 кг, внешний диаметр цилиндрической части – 1400 мм, наибольшая глубина погружения – 2500 м.

Спуск гидростата на глубину 2500 м мог длиться около 20 минут, а подъем около 15 минут. Проектом предусматривалась возможность урегулировать скорость погружения и подъема, причем в случае необходимости скорость может быть доведена до 4 м/сек., что сокращало время подъема до 10 минут.

Гидростат был рассчитан на пребывание под водой двух человек в течение 10 часов, в случае необходимости численность экипажа гидростата могла быть доведена до 4 чел., а также увеличена и длительность пребывания его под водой. Когда гидростат плавал на поверхности воды, при закрытом клинкете, при помощи которого цилиндрическая надстройка сообщается с забортной водой, он обладал запасом плавучести в 2000 кг. Высота подводного борта при этом не превышала бы 130 см. Система погружения гидростата работала за счет выпуска и впуска определенного количества воды в уравнительную цистерну.

Предполагалось снабдить его двумя грузами (по 150 кг), которые сбрасываются в тех случаях, когда всплытие гидростата необходимо ускорить. Для увеличения скорости погружения к гидростату мог быть подвешен на тросе длиною в 100 м дополнительный груз. Вес этого груза зависит от желательной скорости погружения. Кроме того, этот дополнительный груз служит также и для того, чтобы гидростат не смог в процессе быстрого погружения удариться о дно. В самой нижней части гидростата, под нижней платформой, расположен аккумуляторный отсек. В этом же помещении должен был находиться оригинальный поворотный механизм, назначение которого - сообщать гидростату вращение около вертикальной оси, чтобы он мог поворачиваться под водой для наблюдения. Сейчас с этим прекрасно справляются подруливающие устройства. Но тогда конструкторы придумали механизм, состоящий из маховика, насаженного на вертикальный вал. Верхний конец этого вала соединен с электрическим мотором мощностью 0,5 квт.

Вес маховика должен был составлять около 30 кг, а максимальное число оборотов около 1000 в минуту. А работал он так: когда маховик вращается в одну сторону, гидростат поворачивается в противоположную. Считалось, что механизм позволяет осуществлять поворот гидростата на 45 градусов в течение одной минуты.

Гидростат должен был быть снабжен тремя иллюминаторами, один из которых предназначен для наблюдения окружающего водного пространства, второй для наблюдения дна моря при помощи зеркал, третий для производства вспышек для фотосъемки.


Батисфера на обложке журнала "Техника-молодежи".

Для регулирования поступления воды в уравнительную цистерну и в гидравлический механизм, при помощи которого производится сбрасывание грузов, для подачи сжатого воздуха и для других целей автором проекта предусмотрена сложная система трубопроводов.

Таков был в самых общих чертах проект советской батисферы, о котором в технических журналах того времени писалось, что это наглядный пример, «свидетельствующий о том, что недалеко то время, когда люди нашей замечательной страны, завоевавшие Северный полюс и стратосферу, завоюют во славу нашей родины и глубочайшие недра океана, куда никогда еще не проникал человек». Но… вышло так, что строительству этого аппарата помешала (и может быть к счастью, уж очень он был сложным по конструкции) война, а после нее появились аппараты совсем иного типа. Но это уже совершенно другая …



Поделиться