Котел bono energia omv 1500 технические характеристики. Котлы и котельное оборудование BONO Energia

Комбинированное производство тепла и электроэнергии

Комбинированное производство тепла и электроэнергии (ТЭЦ), также называемое когенерацией, является процессом одновременного производства электрической и тепловой энергии. Это означает, что тепло, вырабатываемое для производства электроэнергии, регенерируется и используется. Процесс производства на ТЭЦ может базироваться на использовании паровых или газовых турбин, или двигателей внутреннего сгорания. Первичным источником для производства энергии может быть широкий диапазон топлив, включая биомассу, отходы и ископаемые виды топлива, а также, геотермальная или солнечная энергия.

Финляндия - ведущая страна в области использования когенерации

Количество энергии, которую Финляндия экономит ежегодно, используя источники комбинированного производства энергии, равно более чем 10 процентам всей первичной энергии, используемой в стране, или 20 процентам потребления ископаемого топлива в Финляндии. Приблизительно одна треть электричества, используемого в Финляндии, получена на ТЭЦ. Промышленные ТЭЦ и ТЭЦ централизованного теплоснабжения, соответственно составляют 45 и 55 процентов в системе комбинированного производства. Промышленность использует более половины всей электроэнергии, потребляемой в Финляндии, и почти 40 процентов этого количества, произведена ТЭЦ. В зависимости от годового изменения климата, почти 75 - 80 процентов теплоэнергии для централизованного теплоснабжения производится на ТЭЦ.

Широко используется в течение многих десятилетий

Потребление энергии на душу населения в Финляндии, наиболее высокое среди стран Организации Экономического Сотрудничества и Развития. Это объясняется большой долей энергоемких отраслей промышленности, таких как, целлюлозная и бумажная промышленность, в финской экономике. В результате этого, экономичному использованию и надежному распределению энергии всегда уделялось особенное внимание в Финляндии. Географические и климатические особенности страны обеспечили основу для развития ТЭЦ в централизованном теплоснабжении. Эффективность производства энергии является существенным фактором, так как, ежегодная потребность в тепле и количество часов использования энергии высоки.

История использования промышленных ТЭЦ

Комбинированное производство энергии в промышленности, является результатом потребности в производстве тепла для собственных нужд.

Первые промышленные ТЭЦ в Финляндии были построены, уже в начале 20-х и 30-х годов. ТЭЦ были выбраны потому, что это был наиболее надежный и экономичный способ производства электроэнергии. Местные источники энергии часто использовались как отправная точка.

Индустриальные ТЭЦ противодавления, в качестве топлива, главным образом используют жидкие щелочные отходы, образующиеся при производстве целлюлозы. Черный щелочной раствор является подходящим для сжигания, из-за наличия органических деревянных остатков, которые он содержит. Целлюлозная и бумажная промышленность, не единственные отрасли, которые используют свои отходы для сжигания на ТЭЦ. Металлургическая и химическая промышленности, также производят отходы, которые могут быть превращены в тепло и электричество в процессе когенерации.

Централизованное теплоснабжение, как часть когенерации

Из-за северного местоположения страны, централизованное теплоснабжение - естественный выбор для Финляндии. Планы относительно организации централизованной системы теплоснабжения были осуществлены после II Мировой войны. Когенерация тепловой и электрической энергии производилась при использовании отходов древесины, производимых

деревообрабатывающей промышленностью, это оказалось эффективной концепцией производства энергии, при сохранении окружающей среды. Таким образом, финская централизованная система теплоснабжения базировалась на принципе ТЭЦ с самого начала.

Приблизительно половина зданий в Финляндии подключена к централизованной системе теплоснабжения. В самых крупных городах, эта цифра превышает 90 процентов. Большинство офисных и общественных зданий в стране, также, подключены к централизованной системе теплоснабжения. ТЭЦ обеспечивают примерно три четверти тепла, потребляемого ежегодно. Если сравнивать раздельное производство электрической и тепловой энергии, когенерация позволяет сэкономить, приблизительно треть топлива. Большинство теплопроизводящих компаний, принадлежит муниципалитетам, но доля частных предприятий постоянно увеличивается.

Централизованное теплоснабжение обеспечивает необходимую тепловую нагрузку для ТЭЦ, и это дает большой потенциал для использования возобновляемых источников энергии, типа биотоплива и отходов. Цель Европейского союза, удвоение доли когенерации в производстве энергии, не может быть достигнута без дальнейшего развития этой сферы. Таким образом, централизованное теплоснабжение, должно быть признано важной темой в повестке дня европейской энергетической политики.

ТЭЦ для централизованной системы охлаждения

Если говорить о централизованном теплоснабжении, охлаждение зданий, может также происходить, при помощи тепловой энергии. В течение зимних месяцев высокая температура используется для нагрева помещений, но в летнее время, тепла требуется немного. Это избыточное тепло, может использоваться для производства холода в системе кондиционирования помещений.

Централизованная система охлаждения существует сегодня, только в трех финских городах, но перспективы многообещающие. На сегодняшний день, централизованная система охлаждения в Хельсинки, самая крупная в Финляндии. Тридцать процентов холода получается за счет холодной морской воды, посредством простых теплообменников.


Использование ТЭЦ позволяет производить энергию наиболее экономически выгодным путем

Основная задача ТЭЦ - производить энергию наиболее экономически выгодным путем. Поэтому, комбинированное производство тепла и электроэнергии должно быть дешевле альтернативных способов. Доходность различных вариантов производства должна быть предварительно оценена для полного периода эксплуатации электростанции. ТЭЦ обычно требует больших инвестиций, чем обычные технологии производства энергии, но она потребляет меньше топлива.

В результате, ТЭЦ более дешевы в эксплуатации, чем электростанции схожей мощности. Тепло, производимое ТЭЦ, может использоваться как для централизованного теплоснабжения жилых районов, так и для промышленных нужд. Передача тепла на длинные расстояния является дорогостоящей. Поэтому лучше строить ТЭЦ близко к населенным пунктам и промышленным объектам, где тепловая энергия будет использоваться.



Высокая эффективность

ТЭЦ максимально используют энергию сгорающего топлива, производя электричество и тепло с минимальными потерями. Их КПД достигает 80 - 90 процентов. В то время, как обычные конденсационные электростанции достигают КПД 35 - 40 процентов.

Высокая отказоустойчивость

ТЭЦ имеют высокий уровень отказоустойчивости, позволяя не прерывать процесс производства энергии. В то же самое время, ТЭЦ высоко автоматизированы, таким образом, минимизируя число требуемого персонала и сокращая затраты на эксплуатацию и обслуживание.

Производство электричества и тепла могут быть легко приведены в соответствие с уровнем потребления, который может изменяться очень быстро. Надежность системы централизованного теплоснабжения в Финляндии в течение отопительного сезона, составляет 99,98 процента.

В среднем, теплоснабжение для отдельно взятого клиента, в течение отопительного периода, прерывается только один раз в шесть



Широкий спектр используемого топлива

В комбинированном производстве тепловой и электрической энергии может использоваться широкий спектр видов топлива, включая низкокалорийное и влажное, например индустриальные отходы и биотопливо. Оптимальная комбинация различных видов топлива определяется для каждой ТЭЦ в отдельности, в зависимости от местной ситуации с топливом. Обычно используются следующие виды топлива: природный газ, уголь, промышленные газы, торф и другие виды возобновляемых ресурсов (например, отходы деловой древесины, муниципальные отходы и древесная щепа). Мазут используется в небольших количествах, обычно в качестве подсветки для других топлив.

Традиционно, использование биотоплива при когенерации, связано с технологическими процессами лесной промышленности. По многим причинам, ТЭЦ - идеально подходит для использования биотоплива. Поскольку их теплотворная способность низка, а транспортировка дорогостояща, они имеют тенденцию быть местными видами топлива.



Эффективное производство энергии наносит меньший вред природе

Высокая эффективность и низкий уровень выбросов в процессе когенерации, самый приемлемый, с точки зрения окружающей среды, способ производства энергии. Современные ТЭЦ используют эффективные методы сжигания топлива, чтобы снизить выбросы окислов азота.

Снижение количества сжигаемого для производства энергии топлива, уменьшает негативное влияние на окружающую среду. Например, количество выбрасываемого углекислого газа, при сжигании ископаемого топлива, снижается в зависимости от количества используемого топлива. То же самое происходит и с такими загрязняющими веществами, как сера и окислы азота.

Изучение качества воздуха в крупнейших городах Финляндии показывает, что выбросы серы серьезно снизились и это является прямым результатом использования технологии когенерации и централизованной системы теплоснабжения.



Все преимущества использования ТЭЦ, с точки зрения воздействия на окружающую среду, были осознаны в течение нескольких последних лет. Не смотря на это, экономическая сторона дела, играет решающую роль при принятии решения о постройке того или иного типа источника энергии. Поэтому стоимость энергии произведенной в процессе когенерации, должна быть конкурентоспособной по сравнению с другими источниками энергии.

ТЭЦ и централизованная система теплоснабжения поддерживаются властями, потому что являются мощными инструментами для снижения выбросов углекислого газа. Целью энергетической стратегии Финляндии, является приведение выбросов углекислого газа в соответствие с Киотским Протоколом, в котором говорится, что к 2010 году, уровень выбросов должен быть снижен до показателей 1990 года. Благодаря централизованной системе теплоснабжения и ТЭЦ, в 2004 году Финляндия снизила выбросы углекислого газа в атмосферу на 8 миллионов тонн. Что равно, примерно, трем четвертям планового годового снижения выбросов в соответствии с Киотским Протоколом.


Широкий спектр применения ТЭЦ

Эволюция технологии ТЭЦ, в данный момент, идет в сторону уменьшения мощности. Небольшие источники позволяют в больших количествах

использовать местные виды топлива, такие как: древесина и другие возобновляемые виды, и отказаться от вторичных энергоносителей природных горючих ископаемых.

Технологии предварительной подсушки топлива могут увеличить теплопроизводительность процесса когенерации. Другие современные технологии сжигания, например, газификация или сжигание при избыточном давлении, повышающие производство электроэнергии на ТЭЦ, находятся сейчас на стадии развития. Все это делается для того, чтобы малые ТЭЦ могли быть конкурентоспособными.

Улучшение технологии производства электроэнергии, приведет к увеличению производства тепла. Технология комбинированного цикла, основанная на газификации твердого топлива, может привести к интересным результатам. В этом случае, газ может быть использован в газовой турбине, а выработанное тепло, будет работать в паровой турбине. В этом случае, соотношение производимого электричества и тепла может быть 1:1, сейчас оно составляет 0.5.

Огромный рыночный потенциал существует для использования когенерации для выработки энергии из различных отходов.



Энергетическая политика Финляндии и ТЭЦ

Энергетическая политика Финляндии базируется на трех китах: энергия, экономика и окружающая среда. Устойчивое и безопасное энергоснабжение, конкурентоспособные цены на энергию и минимизация негативного воздействия на окружающую среду, в соответствии с международными обязательствами. Основным и самым важным фактором, влияющим на энергетическую политику, является международное сотрудничество в области снижения выбросов парникового газа. Среди других факторов, влияющих на энергетическую политику, нужно выделить необходимость предотвращения экологических катастроф и адаптирование экономической активности к принципам устойчивого развития.

Когенерация всегда играла основную роль в энергетической политике Финляндии и останется важнейшей ее частью и в будущем. Комбинированный цикл является эффективным способом производства тепла и электроэнергии. Он способствует развитию местных возобновляемых источников энергии. Все эти моменты означают только одно - ТЭЦ является огромным вкладом в снижение выбросов парниковых газов.



В соответствии с решением Правительства, для бесперебойного и безопасного энергоснабжения, необходимо обеспечить производство энергии, основываясь на нескольких видах топлива, поставляемого из различных источников. Целью является создание в будущем гибкой, децентрализованной и сбалансированной энергетической системы. Со своей стороны, Правительство продолжает обеспечить все условия для создания подобной системы, и фокусируется на энергии, произведенной в своей стране, другими словами на возобновляемых энергетических ресурсах и биотопливе.

Правительство, и в будущем, продолжит поддерживать комбинированный цикл производства тепла и электричества. Предпосылкой решений, касательно источников энергии является то, что потребление тепла должно быть с наибольшей эффективностью связано с процессом когенерации. Достаточное внимание, также, должно быть уделено техническому и экономическому аспектам. Высокий статус процесса когенерации определен тем, что общая эффективность источников энергии является важным фактором в области выделенных квот на вредные выбросы. Инвестируя в постоянное развитие технологии, возможно во всеоружии подойти к моменту в будущем, когда обязательства по снижению выбросов парниковых газов, станут очень жесткими. Кроме технологии, развитие сосредотачивается на всей цепочке эксплуатации, доставки и торговли. Возобновляемые источники энергии и энергоэффективность, остаются важными секторами. Постоянные и интенсивные инвестиции послужат разработке и внедрению в жизнь новых, экономичных решений для процесса когенерации, промышленного производства энергии, малой энергетики и эффективного использования энергии.

Правительственные инвестиции, в основном, будут направлены в проекты, внедряющие новые энергетические технологии, с одной стороны, и связанные с особыми технологическими рисками, связанными с демонстрационным характером этих проектов.






Высокоэффективная технология комбинированного цикла

Компания Helsinki Energy

Благодаря своей передовой технологии сжигания газа, ТЭЦ района Vuosaari в Хельсинки, являются одними из самых эффективных и чистых. На них применяется технология комбинированного цикла, при которой скомбинировано два процесса - газовая и паровая турбины. Если сравнивать традиционную схему производства энергии с технологией комбинированного цикла, то во втором случае, мы имеем более высокую эффективность в производстве электричества и, соответственно более высокий выход электроэнергии, в пропорции к производимой тепловой энергии.

В процессе комбинированного цикла, ТЭЦ Vuosaari достигает КПД, превышающий 90 процентов, т. е. теряется менее 10 процентов произведенной энергии. Если мы говорим о потерях энергии, то это чаще всего, тепловые потери. Тепло теряется с дымовыми газами, охлаждающей жидкостью, а также, самом процессе производства.

Производство электроэнергии - 630 МВт

Производство тепла - 580 МВт

Топливо - природный газ 650-800 миллионов м3/г



Малые ТЭЦ с процессом газификации


Компания Kokem ä en Lampo Oy

Первые малые ТЭЦ, работающие по технологии Novel, газификации топлива в слое, были построены в 2004 году. Станция оборудована полной технологической цепочкой газоочистки, состоящей из установки реформинга газа, фильтра и кислотно-щелочного скруббера для удаления остатков азотных соединений. Для производства электричества используются три газовые турбины по 0.6 мВт и один газовый котел для регенерации тепла.

Газификатор Novel является новой разработкой, принцип его действия основан на подаче топлива под давлением, такой способ дает возможность использования волокнистого биотоплива с низкой объемной плотностью. В газификаторе может использоваться широкий спектр отходов биологического происхождения с влажностью от 0 до 55 процентов и размером частиц от опилок до крупной щепы.

Производство электроэнергии – 1.8 МВт

Производство тепла – 4.3 МВт

Тепловая мощность топливосушилки 429 кВт

Емкость топливохранилища – 7.2 МВт


Комплексный подход для достижения рентабельности

Компания Vapo Oy

Постройка ТЭЦ, расширение и модернизация производства топливных гранул в Ilomantsi были завершены в ноябре 2005 года. ТЭЦ была оборудована котлом для сжигания в «кипящим слое». Модернизация производства топливных гранул заключалась в постройке нового приемника для сырья, сушилки, третьей линии для производства гранул, системы конвейеров и бункера. ТЭЦ, производство гранул и сушилка управляются из одной диспетчерской. В качестве топлива используются фрезерный торф и древесина. Потребление топлива, примерно 75 ГВт в год.

Емкость топливохранилища – 23 МВт

Производство тепла для теплоснабж. – 8 МВт


От каменного угля к биотопливу


Компания Porvoon Energia Oy

ТЭЦ Tolkkinen была переведена с каменного угля на биомассу. Компания, хотела убить двух зайцев одним выстрелом - снизить потребление угля и снизить нагрузку на окружающую среду. Котел с цепной колосниковой решёткой был заменен котлом с «кипящем слоем» в 2000 году. Это предоставило хорошую возможность использовать различные типы древесины и древесных отходов в качестве топлива. Одновременно, были модернизированы системы подачи воздуха, отсоса дымовых газов, сбора золы, подачи топлива, контрольные приборы и автоматика. Скруббер для утилизации отходящего тепла, который сможет поднять эффективность станции на более чем 7 МВт, будет достроен в 2006 году.

Емкость топливохранилища – 54 МВт

Производство пара – 46 МВт

Производство электроэнергии 7 МВт

Производство тепла – 25 МВт


Энергия для ЦБК и системы теплоснабжения

Компания Kymin Voima Oy

ТЭЦ Kymin Voima находится в собственности компаний Pohjolan Voima Oy и Kouvolan Seudun Sahko Oy. Она расположена на ЦБК компании UPM Kymi, на ТЭЦ используется технология сжигания топлива в «кипящем слое». Она производит энергию, как для технологического процесса, так и для систем централизованного

теплоснабжения городов Kouvola и Kuusankoski. В качестве топлива используются: древесная кора, рубочные отходы, шламы, торф, газ и мазут. Потребление топлива составляет примерно 2,100 ГВт/год.

Производство электроэнергии – 76 МВт

Технологический пар – 125 MWth

Пр-во технологического тепла – 15 MWth

Производство тепла для теплоснабж. – 40 MWth


ТЭЦ Forssa сжигает только древесину

Компания Vapo Oy

Forssa Bio Power Plant - первая в Финляндии ТЭЦ (1996 год), в системе централизованного теплоснабжения, использующая в качестве топлива только древесину. Для промышленных нужд древесное топливо, широко использовалось и до этого. Процесс сжигания происходит в «кипящем слое». Эта технология позволяет применять практически все остальные доступные виды топлива. Основным видом топлива, являются отходы деревообрабатывающей промышленности. Например опилки и кора, вместе с рубочными отходами и отходами строительства. При сжигании древесины не происходит выбросов серы, а выбросы окислов азота незначительны.

Производство электроэнергии – 17 МВт

Производство тепла для теплоснабж. – 48 МВт


Гибкая технология

Компания Oy Ahlholmens Kraft Ab

ТЭЦ AK2 принадлежит компании Oy Ahlholmens Kraft Ab. Теплоисточник гибок в эксплуатации, поэтому вне зависимости от объемов выработки электричества, тепло производится в том количестве, которое необходимо в данный момент. КПД установки при производстве тепла, составляет более 80%, поэтому, производство не наносит ущерба окружающей среде. Тепло поставляется в город Pietarsaari и на ЦБК компании UPM.

Основными видами топлива являются уголь и различные виды биотоплива. Такие как: древесная кора, щепа, другие отходы лесной промышленности и торф.

Производство электроэнергии – 240 МВт

Технологический пар – 100 МВт

Производство тепла для теплоснабж. – 60 МВт

Назначение теплоэлектроцентралей. Принципиальная схема ТЭЦ

ТЭЦ (теплоэлектроцентрали) - предназначены для централизованного снабжения потребителей теплом и электроэнергией. Их отличие от КЭС в том, что они используют тепло отработавшего в турбинах пара для нужд производства, отопления, вентиляции и горячего водоснабжения. Из-за такого совмещения выработки электроэнергии и тепла достигается значительная экономия топлива в сравнении с раздельным энергоснабжением (выработкой электроэнергии на КЭС и тепловой энергии на местных котельных). Благодаря такому способу комбинированного производства, на ТЭЦ достигается достаточно высокий КПД, доходящий до 70%. Поэтому ТЭЦ получили широкое распространение в районах и городах с высоким потреблением тепла. Максимальная мощность ТЭЦ меньше, чем КЭС.

ТЭЦ привязаны к потребителям, т.к. радиус передачи теплоты (пара, горячей воды) составляет приблизительно 15 км. Загородные ТЭЦ передают горячую воду при более высокой начальной температуре на расстояние до 30 км. Пар для производственных нужд давлением 0.8-1.6 МПа может быть передан на расстояние не более 2-3 км. При средней плотности тепловой нагрузки мощность ТЭЦ обычно не превышает 300-500 МВт. Только в крупных городах, таких как Москва или Санкт-Петербург с большой плотностью тепловой нагрузки имеет смысл строить станции мощностью до 1000-1500 МВт.

Мощность ТЭЦ и тип турбогенератора выбирают в соответствии с потребностями в тепле и параметрами пара, используемого в производственных процессах и для отопления. Наибольшее применение получили турбины с одним и двумя регулируемыми отборами пара и конденсаторами (см. рис). Регулируемые отборы позволяют регулировать выработку тепла и электроэнергии.

Режим ТЭЦ - суточный и сезонный - определяется в основном потреблением тепла. Станция работает наиболее экономично, если ее электрическая мощность соответствует отпуску тепла. При этом в конденсаторы поступает минимальное количество пара. Зимой, когда спрос на тепло максимален, при расчетной температуре воздуха в часы работы промпредприятий нагрузка генераторов ТЭЦ близка к номинальной. В периоды, когда потребление тепла мало, например летом, а также зимой при температуре воздуха выше расчетной и в ночные часы электрическая мощность ТЭЦ, соответствующая потреблению тепла, уменьшается. Если энергосистема нуждается в электрической мощности, ТЭЦ должна перейти в смешанный режим, при котором увеличивается поступление пара в части низкого давления турбин и в конденсаторы. Экономичность электростанции при этом снижается.

Максимальная выработка электроэнергии теплофикационными станциями "на тепловом потреблении" возможна только при совместной работе с мощными КЭС и ГЭС , принимающими на себя значительную часть нагрузки в часы снижения потребления тепла.



В России внедрен парогазовый цикл производства электрической и тепловой энергии, отличающийся высоким КПД и быстрым вступлением в производственную работу. Головным энергоблоком является Северо-

Западная , первый энергоблок которой работает на энергосистему Финляндии (табл.2.3), а остальные три находятся в стадии строительства.

Станция состоит из четырех энергоблоков ПГУ-450Т. В состав каждого энергоблока входят две газовые турбины типа V94,2 фирмы Siemens с генераторами ТФГ-160-2У3 производства АО «Электросила», два вертикальных котла-утилизатора П-90 двух давлений производства АО «Подольский машиностроительный завод», теплофикационной паротурбинной установки Т-150-7,7 производства АО «ЛМЗ» с генератором ТФП-160-2У3 производства АО «Электросила» - табл.2.3 и рис.2.3.

Мощные газовые турбины модели V94,2 на 150 МВт, 50 Гц отличаются высокой надежностью и гибкостью в работе. Петербургское предприятие «Интертурбо», созданное компаниями Siemens AG и ЛМЗ, производит сборку газовых турбин для Северо-Западной ТЭЦ.


Газовая турбина V94,2 является одновальной, однокорпусной (табл.2.4) и характеризуется прифланцованными сбоку камерами сгорания большой емкости, с многоступенчатым (16 ступеней) компрессором и четырехступенчатой турбиной. В холодном конце, со стороны компрессора, приводится в движение турбогенератор - рис.2.3.

В состав каждого блока входят два котла-утилизатора для выработки пара двух давлений: высокого и низкого и горячей воды с использование тепла выхлопных газов, поступающих в котел-утилизатор за счет выхлопа газовой турбины. Котел-утилизатор выполнен однокорпусным вертикального профиля с принудительной циркуляцией среды в испарительных контурах высокого и низкого давлений.

Котел-утилизатор выполнен газоплотным за счет металлической обшивки. Контур высокого давления включает экономайзерную, испарительную и пароперегревательную поверхности, а контур низкого давления — испарительную и пароперегревательную поверхности.

Технические показатели котла-утилизатора: паропроизводительность контура: высокого давления 242 т/час; низкого давления 56 т/час; давление пара высокого давления 8,0 МПа; низкого давления 0,65 МПа.

Паровая теплофикационная турбина Т-150-7,7 представляет одновальный двухцилиндровый агрегат с четырьмя регулируемыми отборами пара и предназначена для привода генератора ТФП-160-2У3 и для отпуска тепла на нужды теплофикации.

Теплофикационная установка турбоустановки включает в себя трехступенчатую бойлерную установку, питаемую паром из регулируемых отборов (ПСГ-1,2,3) и пиковый бойлер, питаемый от линии свежего пара (ПСВ-4).

В составе ПГУ Северо-Западной применены турбогенераторы с воздушным охлаждением. В отличие от турбогенераторов с водородным или водяным охлаждением турбогенераторы с воздушным охлаждением более надежны в эксплуатации, просты в обслуживании, обладают высокой степенью готовности и повышенной маневренностью, а также возможностью высокой степени автоматизации.

Коэффициент мощности генераторов cos = 0,8, 15,75 кВ, статора 7330А, коэффициент полезного действия 98,54%.

Присоединение генераторов к шинам ОРУ-110 и 330 кВ принято по блочной схеме. На ОРУ-330 кВ установлены элегазовые баковые выключатели трехполюсного исполнения с длительным, до 20 лет, сроком эксплуатации без ремонтного обслуживания.

В турбогенераторах применена стандартная схема статического тиристорного возбуждения и регулируемый источник переменной частоты вращения (СПЧР), что обеспечивает плавное ускорение газотурбинных генераторов из состояния покоя (n = 0) до синхронной частоты вращения (n = 3000 об/мин) в течение четырех минут за счет системы синхронного пуска главных машин - рис.6.3.

На станции применена АСУ ТП блочного уровня с системой прямого цифрового управления в соответствии с функциональным делением технологического оборудования: газовая турбина, паровая турбина и пароводяной тракт. Технические средства управления объединены магистральным интерфейсом.

Особенности режимов оборудования ТЭЦ

Особенности режимов оборудования ТЭЦ

Общие сведения

Основная задача ТЭЦ – обеспечение надежной подачи потребителям пара заданных параметров и горячей воды при заданных температуре и расходе. Поскольку ТЭЦ при работе в режимах с отборами имеют наименьший удельный расход топлива, при покрытии электрического графика нагрузки они должны занимать его базовую часть и, следовательно, их участие в регулировании мощности большей частью ограничено. В то же время ТЭЦ, имеющие преобладающую отопительную нагрузку, в летнее время часто привлекаются к работе преимущественно по конденсационному режиму и потому в этот период участвуют в регулировании мощности в системе.

Привлечение ТЭЦ к регулированию электрической мощности как в часы пик за счет сокращения теплофикационного отбора и увеличения конденсационной мощности, так и в часы провала нагрузки за счет разгрузки турбин является вынужденным мероприятием, имеющим следствием значительный перерасход топлива на ТЭЦ и в энергосистеме в целом.

Выше уже отмечен сезонный характер режимов работы ТЭЦ, которые в летний период разгружаются по отборам и соответственно по свежему пару, в результате чего часть котлов высвобождается и выводится в резерв или в ремонт. Топливоснабжение ряда ТЭЦ также носит сезонный характер: уголь и мазут – зимой, природный газ – летом. Работа котлов на газе снижает их минимальную допустимую нагрузку и облегчает возможность маневрирования при сниженной нагрузке летом как числом работающих парогенераторов, так и их разгрузкой.

Большинство ТЭЦ имеет неблочную схему при отсутствии промежуточного перегрева пара, что сказывается как на конструкциях котлов ТЭЦ, так и на режимах их работы. Неблочная схема позволяет выводить часть котлов в резерв при снижении потребления свежего пара турбинами подобно тому, как это было описано выше (гл. 2) для неблочных КЭС.

На ТЭЦ с начальным давлением пара 12,75 МПа применяются исключительно барабанные котлы с непрерывной продувкой котловой воды.

Применение на отопительных ТЭЦ энергоблоков на закритическое давление пара с прямоточными котлами и турбинами Т-250-240 приводит к изменению режимов работы ТЭЦ в сторону приближения их к режимам блочных КЭС, так же как и с турбинами Т-180 с промперегревом. На некоторых ТЭЦ с турбинами мощностью Т-100-130 и с котлами, работающими на газомазутном топливе, был осуществлен переход к блочной схеме, что так же приблизило режимы работы котлов к условиям блочной КЭС.

На значительном числе ТЭЦ система водоснабжения оборотная, с градирнями. Работа системы водоснабжения на ТЭЦ также носит сезонный характер. В зимнее время паровая нагрузка конденсаторов отопительных ТЭЦ резко сокращается. При работе теплофикационных турбин в режиме трехступенчатого подогрева конденсаторы охлаждаются сетевой водой и циркуляция охлаждающей воды уменьшается столь значительно, что часть градирен приходится выводить в резерв и принимать меры против замораживания действующих градирен.

В летний период паровая нагрузка конденсаторов таких ТЭЦ увеличивается и возникают трудности с поддержанием достаточно глубокого вакуума, что обусловлено повышенной температурой воды, охлаждаемой в градирнях, а также, как правило, недостаточной производительностью градирен. При повышении температуры охлаждающей воды сверх 33 °С приходится снижать паровую нагрузку конденсаторов.

Для поддержания нормального вакуума необходимо обеспечивать чистоту конденсаторов, что повышает требования к солесодержанию оборотной воды.

К особенностям ТЭЦ относится наличие дополнительного по сравнению с КЭС оборудования водоподогревательных установок: сетевых подогревателей, сетевых насосов, пиковых водогрейных котлов.

При работе турбин в теплофикационных режимах выработка электроэнергии на тепловом потреблении определяется в основном давлением пара в теплофикационных отборах, которое зависит от режима тепловой нагрузки и от чистоты поверхностей нагрева сетевых подогревателей.

В тех случаях, когда пиковые водогрейные котлы обычно работают на сернистом мазуте, они подвержены низкотемпературной коррозии, для предотвращения которой необходимо, чтобы температура сетевой воды на входе в водогрейный котел при всех режимах была выше 105 °С . Такая же температура необходима для того, чтобы пиковые котлы могли развивать расчетную тепловую мощность.

Поскольку температура сетевой воды после сетевых подогревателей при многих длительных режимах оказывается ниже 105 °С, предусмотрена схема рециркуляции сетевой воды, показанная на рис. 4-1.

К пиковому водогрейному котлу подводится сетевая вода G СВ при постоянной температуре 105°С. В то же время из сетевой подогревательной установки в подающую тепловую сеть направляется расход сетевой водыG СВ при температуреt СВ, которые определяются режимом тепловой нагрузки. Для того чтобы посредством рециркуляции сетевой воды с расходомG Ц обеспечить на входе в водогрейный котел для всех режимов 105 °С, надо поддерживать за водогрейным котлом температуруt пвк >105°С. Поэтому в диапазоне режимов, в которых температура сетевой воды в подающей линииt ПС <105 °С, необходимо, чтобыt пвк >t ПС.

Температура и расход сетевой воды в подающей линии t ПС иG С B достигаются за счет перепуска части сетевой водыG обв по обводной линии.

Следует отметить, что большие трудности в работе водогрейных котлов создают нарушения водного режима тепловой сети (подпитка сырой водой).

Влияние водного режима теплосети на тепловую экономичность ТЭЦ

На ТЭЦ с турбинами типа Т и ПТ, отборный пар которых используется для подогрева сетевой воды в сетевых подогревателях, удельная выработка электроэнергии на тепловом потреблении существенно зависит от давления в теплофикационных отборах. Давление же в теплофикационных отборах в свою очередь (при заданной тепловой нагрузке и температурном графике теплосети) определяется недогревом сетевой воды до температуры насыщения отборного пара, равным обычно 3…7 °С. Такие расчетные значения недогрева в течение сравнительно длительного периода отопительного сезона могут быть обеспечены только при строгом соблюдении норм водного режима теплосети.

В соответствии с ПТЭ теплосеть должна заполняться тщательно подготовленной подпиточной водой, которая должна также использоваться и для восполнения утечек из теплосети. Для этой цели исходная вода, используемая для восполнения потерь в теплосети, под­вергается химической обработке (обычно по схеме Na-катионирования) и термической деаэрации с целью удаления кислорода и углекислого газа.

Согласно ПТЭ подпиточная вода должна удовлетворять следующим нормам: содержание кислорода не более 0,05 мг/кг, карбонатная жесткость не более 0,7 мг-экв/кг. Однако если в условиях эксплуатации допускаются нарушения водного режима теплосети (подпитка сырой водой в аварийных случаях, присосы водопроводной воды в теплообменниках абонентов, присосы воздуха в теплосети и недостаточная деаэрация подпиточной воды на ТЭЦ), на латунных трубках сетевых подогревателей появляются значительные отложения солей (накипь толщиной до 1 мм и более), приводящие к резкому снижению коэффициента теплопередачи и росту недогрева .

Вследствие этого давление в теплофикационных отборах возрастает, а удельная выработка электроэнергии снижается, что приводит в конечном итоге к перерасходу топлива.

Таким образом в условиях эксплуатации необходимо обеспечить тщательный и систематический контроль за состоянием сетевых подогревателей и условиями их эксплуатации с соблюдением требуемых норм водного режима теплосети (по солесодержанию и кислороду) и плотности с тем, чтобы обеспечить высокую экономичность работы ТЭЦ.

Взаимосвязь режимов тепловой сети и теплофикационных турбин

Из трех параметров, которые определяют режим тепловой нагрузки теплофикационной турбины один – температура обратной сетевой воды – является неуправляемым и определяется режимом работы всей системы теплоснабжения; два других параметра – тепловая нагрузка отбора и расход сетевой воды – являются управляемыми и поддерживаются на ТЭЦ на заданном уровне. Температура сетевой воды в подающей линии также является заданной в зависимости от температуры наружного воздуха.

В режимах работы теплофикационной турбины по тепловому графику развиваемая мощность в значительной мере зависит от уровня температуры обратной сетевой воды.

Тепловая нагрузка горячего водоснабжения меняется в течение суток в соответствии с разбором горячей воды абонентами: утренний пик, затем дневной провал, вечерний пик и ночной провал, при котором нагрузка падает почти до нуля. Соответственно с суточным графиком тепловой нагрузки горячего водоснабжения меняется температура обратной сетевой воды после абонентов, но до ТЭЦ эти изменения доходят с запаздыванием, которое определяется емкостью тепловой сети.

На рис.4-25 показано экспоненциальное возрастание t ОС после прекращения разбора горячей воды. Из графиков (рис.4-25) видно, что температура обратной сетевой воды достигает наибольшего значения к шести часам утра, т. е. к моменту начала утреннего набора электрической нагрузки, а затем снижается. Характер протекания расчетных и фактических кривых идентичен, и совпадение их вполне удовлетворительное.

Повышение температуры поступающей на ТЭЦ обратной сетевой воды при работе по тепловому графику приводит к повышению давления в регулируемом теплофикационном отборе, вследствие чего регулятор давления дает команду на прикрытие регулирующих клапанов перед ЦВД. Это приводит к разгрузке турбины как по отпуску тепла, так и по выработке электроэнергии.

В условиях эксплуатации положение может быть выправлено вмешательством машиниста турбины, который может вручную устанавливать большее задание регулятору давления и повышать давление отбора.

Таким образом, при ручной подрегулировке давления в отборе повышение температуры обратной сетевой воды приводит к повышению давления в отборе и соответствующему снижению развиваемой мощности турбины. Наибольшее повышение температуры обратной сетевой воды приходится, как это видно из рис. 4-25, на часы утреннего набора нагрузки в энергосистеме, что особенно ощутимо.

Из сказанного также следует, что регулятор давления теплофикационного отбора должен уступить место регулятору заданной тепловой нагрузки. Например, для турбины Т-175/210-130 предусмотрен именно такой регулятор.

Для стабилизации температуры обратной сетевой воды в течение суток было предложено перейти к суточному регулированию температуры прямой сетевой воды.

Последнее сводится к ночному снижению температуры прямой сетевой воды на ТЭЦ, что приведет с некоторым запаздыванием, обусловленным емкостью подающей теплосети, к понижению температуры прямой сетевой воды у абонентов и к соответствующему снижению температуры сетевой воды после отопления. Для компенсации недоотпуска тепла на отопление из-за ночного снижения температуры сетевой воды в подающей магистрали необходимо соответственно повышать ее в дневные часы за счет дополнительного нагружения водогрейных котлов.

Например при понижении температуры в подающей линии на ТЭЦ ночью на 18 °С электрическая мощность на четырех турбоагрегатах Т-100-130 увеличилась в часы утреннего подъема нагрузки на 16 МВт по сравнению с режимом без понижения температуры в подающей линии. Во время испытаний производилось термографирование внутри помещений в пяти- и девятиэтажных панельных зданиях, находящихся на расстоянии 10 км от ТЭЦ. Термографирование показало, что температура внутри помещений при снижении температуры сетевой воды в подающей линии от ТЭЦ менялась не более чем на 0,4°С.

Эффект повышения электрической мощности турбин Т-100-130 в часы подъема нагрузки означает помимо дополнительной мощности также дополнительную выработку электроэнергии на тепловом потреблении.

Таким образом применение суточного регулирования температуры сетевой воды в подающей линии на ТЭЦ существенно улучшает ее показатели.

Нагреватели ВОТ OIL MATIC серии OMV компании BONO ENERGIA производятся в горизонтальном или вертикальном исполнении, оснащаются многотрубным змеевиком, установленным внутри цилиндрической оболочки и укомплектованные всеми необходимыми устройствами контроля и безопасности.
На основании технического задания заказчика специалисты инженерного центра Бауtерм в Крыму и Севастополе также подберут и поставят циркуляционные насосы, расширительные ёмкости, ёмкости хранения термальной жидкости и всё дополнительное оборудования котельной.
Котлы OIL-MATIC тип OMV имеют маркировку и сертифицированы в соответствии со стандартами ЕС:
- Директиве PED 97/23/CE;
- Машины и оборудование (MD) 2006/42/CE;
- Директиве общих правил внутреннего рынка по обращению с природным газом 2009/73/EC;
- Низковольтные системы, электробезопасность (LVD), директива 2006/95/EC;
- Директиве по электромагнитной совместимости 89/336/EEC.
Доступные исполнения:
1. Стандартное горизонтальное исполнение (OMV);
2. Вертикальное исполнение (OMV/VERT);
3. Исполнение с подогревателем воздуха и с горелкой BONO (OMV/PA) Также по запросу возможны исполнения с более высокой температурой и теплопроизводительностью, а также установки контейнерного исполнения.
Преимущества нагревателей ВОТ OIL MATIC серии OMV:
1. Нагреватели серии OMV имеют до 4х концентрических змеевиков, которые содержат до 7 параллельных трубных элементов, что позволяет максимально увеличить конвективную секцию нагревателя. Данная конструкция нагревателя является 3х-ходовой с оптимизированной поверхностью теплообмена и гарантирующая высокий тепловой КПД.
2. Секции змеевика сконструированы таким образом, чтобы получить турбулентный поток теплоносителя, снижая разницу между температурой потока и пристеночным слоем, тем самым увеличивая срок службы теплоносителя.
3. Змеевиковая конструкция гарантирует малые габариты нагревателей, как в вертикальной, так и в горизонтальной конфигурации, минимизирует необходимое пространство для установки.
4. Съёмная крышка позволяет легко проводить инспекцию и техническое обслуживание внутренних частей нагревателя.
5. Нагреватель может быть оснащён рекуператором (подогреватель воздуха идущего на горение). Применение рекуператора увеличивает тепловой КПД нагревателя на 4%.
Многотрубный котлоагрегат серии OIL-MATIC типа ОМV широко применяется в следующих областях:
- Химическая и нефтехимическая промышленность;
- Транспортировка нефтепродуктов;
- Производство продуктов питания и напитков;
- Производство битума;
- Полиграфия;
- Косметическая промышленность;
- Целлюлозно-бумажная промышленность;
- Упаковочная промышленность;
- Деревообработка.
Технические характеристики термомасляного котла OMV 1500 BONO:
Тепловая мощность - 1,7 МВт.
Максимальная рабочая температура - 300 грд C.
Тепловой КПД при 250 Грд. C - 88%



Поделиться