Грамотная водоподготовка на тэц.

Основные требования наших Заказчиков в сфере водоподготовки для теплоэнергетики - безопасность, надёжность, экономичность, экологичность и качество оборудования и очищенной воды.

Ухудшение качества питательной воды в процессе водоподготовки ТЭЦ или ГРЭС ведёт к активной коррозии металла, образованию накипи и отложений на поверхностях нагрева, теплопередающих поверхностях, отложений в проточной части паровых турбин, шлама в оборудовании и трубопроводах. В этом случае работа энергообъектов становится неэкономичной и небезопасной.

Нормативная документация, устанавливающая требования к качеству водоподготовки для теплоэнергетики, жёстко регламентирует требования к питательной воде, к очистке конденсатов, к сбросам от ТЭЦ и ко всем видам работ: к проектированию, изготовлению, монтажу и ПНР водоподготовительного оборудования. Регламентирующие документы: ВНТП, ГОСТ, СНиП, МУ, СТО, РД, требования производителей котлового и турбинного оборудования и пр.

Экодар в своей деятельности руководствуется всей современной нормативной базой, благодаря чему наши Заказчики гарантированно получают оптимальные системы очистки воды, спроектированные, изготовленные, смонтированные, и отлаженные силами компании Экодар, полностью готовые к вводу в эксплуатацию.

Основные технологические решения по очистке воды и водоподготовке для теплоэнергетики применяются в зависимости от исходных условий и конечных требований. Так, для котлов низкого давления часто используются простые схемы умягчения с предочисткой. Для котлов среднего и высокого давления на ТЭЦ и ГРЭС применяются более сложные многоступенчатые схемы обессоливания с использованием нанофильтрации, и качество воды на выходе из ВПУ отвечает самым высоким требованиям.

Предварительная очистка:

    осветление как в традиционных осветлителях, так и в осветлителях-флотаторах;

    механическое фильтрование с помощью самопромывных сетчатых, дисковых, напорных и безнапорных осветлительно-сорбционных фильтров;

    ультрафильтрация.

Обессоливание:

    ионный обмен, прямоточный или противоточный, одно- или двух ступенчатый, в зависимости от качества исходной воды и конечных требований;

    обратноосмотическое обессоливание, одно- или двухступенчатое.

Глубокое обессоливание:

    ионообменные фильтры смешанного действия (ФСД);

    мембранная электродеионизация.

В процессе разработки технологических схем очистки воды с использованием ультрафильтрации и нанофильтрации Экодар учитывает все возможности повторного использования конденсатов и дренажей, промывных вод, их очистки и возврата в цикл систем водоподготовки, поскольку и мы, и наши Заказчики ответственно относимся к окружающей среде и её защите.

Организация водооборотных циклов на объектах теплоэнергетики также требует профессионального и ответственного подхода. Экодар совместно со своими партнерами предлагает современные программы дозирования, контроля и стабилизации воды.

Понятие ультрафильтрации

Принцип ультрафильтрации основан на «продавливании» воды через полупроницаемую мембрану. Основное отличие данной технологии от традиционного объемного фильтрования заключается в том, что большинство задерживаемых частиц оседает на поверхности мембраны, создавая дополнительный фильтрующий слой, обладающий собственным сопротивлением. Ультрафильтрация позволяет удалить из воды взвешенные вещества, водоросли, микроорганизмы, вирусы и бактерии, а также значительно снизить мутность. Также данный способ очистки воды уменьшает ее цветность и окисляемость. Использование ультрафильтрации эффективно заменяет такие этапы водоподготовки, как отстаивание и осаждение.

Технология нанофильтрации

Технология нанофильтрации объединяет особенность ультрафильтрации и обратного осмоса. Для очистки воды путем нанофильтрации используют заряженные и электронейтральные полимерные мембраны, а также керамические мембраны, близкие по размерам пор к ультрафильтрационным. Благодаря ультратонкой полупроницаемой мембране задерживаются различные растворенные загрязнители, величина которых не превышает величину молекулы. В результате нанофильтрации происходит разделение жидкости на 2 части: концентрат соли и чистую воду.

При нанофильтрации используется мембрана, поры которой в 10–50 раз меньше пор мембраны для ультрафильтрации. Благодаря этому нанофильтрация позволяет исключить возможность проникновение микроорганизмов через мембранные элементы. Кроме этого, применяется более высокое (в 2–3 раза) давление для «проталкивания» воды. Естественно, технология нанофильтрации позволяет удалить любые загрязнения, которые удаляются с помощью механической очистки воды, микро- и ультрафильтрации.

Сравнение характеристик ультрафильтрации и нанофильтрации.

Название метода Рабочее давление, бар Размер удаляемых частиц, АО (10–4 мкм) Соотношение пермеат/исходная вода, % Удаляемые из воды примеси
1

Ультрафильтрация

1,0–4,5 80–2000 85–95 Данный метод используется для удаления из воды взвешенных частиц, коллоидов, цист простейших, водорослей, бактерий, вирусов, высокомолекулярных органических веществ.
2

Нанофильтрация

3,5–20 8–100 50–75 Нанофильтрация предназначена для очистки воды от взвешенных частиц и высокомолекулярных органических растворенных веществ. Также нанофильтрация удаляет 20–85 % растворенных неорганических веществ.

Экодар – патентообладатель в области очистки воды, член СРО по проектированию и СМР. Гарантией качества, надежности, безопасности и экологичности являются наличие в компании Экодар интегрированной системы менеджемента (ИСМ), сертифицированной на соответствие требованиям ISO 9001-2011 и Р ИСО 14001-2007 и высокопрофессиональных отделов и служб:

    Технологического отдела, разрабатывающего и внедряющего технологические схемы, осуществляющего всестороннее обследование объекта, пилотные испытания, и подготовку обоснования выбранных технических решений;

Главный «враг» энергопредприятий – это вода с большим содержанием солей жесткости. Именно поэтому ионообменное, сорбционное или мембранное оборудование на ТЭЦ, ГРЭС, ТЭС является основой системы водоподготовки предприятия.

Водоочистка и водоподготовка в энергетике является одним из основных этапов организации деятельности теплоэлектростанции. Существующие ТЭС вырабатывают тепло за счет нагрева воды и последующей конденсации пара. Именно от исходного состава подпиточного агента и зависит срок службы парогенератора теплоэлектростанции.

В чем отличие фильтров для ТЭЦ, ГРЭС и ТЭС? И как продлить срок службы дорогостоящего оборудования, предназначенного для обогрева жилых домов и промышленных сооружений?

Отличие систем водоподготовки для ТЭЦ, ГРЭС и ТЭС

Большая часть существующего оборудования ТЭЦ, ГРЭС и ТЭС изготавливается из металлических сплавов. Именно поэтому главный «враг» энергопредприятий – это склонные к солеобразованию примеси, содержащиеся в подпиточной воде (соли жесткости и железа).

Все существующие теплоэлектростанции можно разделить на несколько типов (рисунок 1.). Главное отличие ТЭЦ от КЭС в том, что теплоэлектроцентрали производят тепло (в виде поступающей к потребителям горячей воды) и электроэнергию, в то время, как конденсационные теплоэлектростанции за счет многократного конденсационного цикла осуществляют выработку только электроэнергии.

Рисунок 1. Типы теплоэлектростанций

Вода на ГРЭС и АЭС используется для хозяйственно-питьевых нужд (охлаждения реактора или активной рабочей зоны). Вследствие этого система водоподготовки на подобных предприятиях ограничивается фильтрами-умягчителями и обессоливателями, улавливающими соли жесткости и оксиды железа, разрушающие трубопроводную систему.

Отличия систем водоподготовки различных типов теплоэлектростанций обусловлены особенностями технологического процесса предприятия. Так, отработанная горячая вода ТЭС просто сбрасывается. Таким образом, наиболее мощные фильтры паротурбинной теплоэлектростанции используются именно для очистки поступающего сырья. Горячая вода ТЭЦ используется для отопления жилых домов и производственных корпусов. Именно поэтому система водоочистки теплоэлектроцентрали включает в себя дополнительные модули, предназначенные для улавливания загрязнений, способных привести к коррозии не только барабанов котлов, но и бытовых линий коммуникаций.

Фильтрационные системы для ТЭС

Система водоподготовки энергопредприятий включает несколько этапов очистки от загрязнений.

Таблица 2. Типы системы водоподготовки для энергопредприятий

Этап водоподготовки

Используемые фильтры

Осветление воды

Отстойники и механические фильтры с добавлением коагулянтов и флокулянтов

Обеззараживание

Озонирование, хлорирование

Умягчение воды

Реагентное отстаивание, катионные фильтры

Обессоливание воды

Анионные фильтры, декарбонизатор, электродиадизатор, обратный осмос, испарители

Деаэрация воды (удаление газообразных веществ)

Термические деаэраторы, вакуумные деаэраторы, атмосферные деаэраторы

Продувка котла

Промывные фильтры

Промывка пара

Специальные реагенты-обессоливатели

На европейских теплоэнергетических предприятиях КПД потерь составляет всего 0,25% в день. Такие высокие результаты работы достигаются за счет комбинации нескольких традиционных и инновационных методов обессоливания и очистки используемого сырья и подпиточной воды. Срок службы оборудования предприятий теплоэнергетики при таких условиях достигает 30-50 лет.

Используемые источники:

1. «Экологически безопасные ТЭС». Электронный журнал энергосервисной компании «Экологические системы»

2. Копылов А.С., Лавыгин В.М. Водоподготовка в энергетике

Жидкость, используемая в теплоэнергетике, подлежит обязательному очищению? как перед ее применением, так и после него. Прохождение через очистительные сооружения позволяет защитить трубы и котлы от возникновения коррозий, образования накипи, а также обеззаразить стоки для дальнейшего их возврата в окружающую среду. Только специалист сможет определить этапы и что применяется для водоподготовки на ТЭЦ после полного химико-биологического анализа. Это позволит выявить необходимость использования определенных реагентов и составить оптимальную схему очистительного сооружения.

На сегодняшний день цель реконструкции системы химической водоподготовки ТЭЦ заключается в получении более качественного сырья при минимальной затрате средств. Учеными предлагаются новые способы фильтрации жидкости, применение безопасных окислителей и нейтрализаторов. Одним из популярных методов является обратный осмос, часто используемый в различных сферах производства. Стандартная схема, типовая инструкция для водоподготовки обратного осмоса позволяет избавиться от растворенных солей, металлов и примесей. Принцип ее действия заключается в прогоне жидкости через мембраны с ячейками, размер которых зависит от типа загрязнения. Благодаря своей высокой эффективности данная схема водоподготовки на ТЭС, ктэц 3 для бутилированной воды с успехом применяется на многих предприятиях. Конечным этапом очищения жидкости для этих целей становится прохождение ее через современный стерилизатор паровой с водоподготовкой и с комплектом запчастей, который благодаря высокому давлению пара обеспечивает полное очищение ее от всевозможных бактерий.

Процессы водоподготовки на ТЭЦ и ТЭС

Одним из самых современных, эффективных и безопасных методов является водоподготовка озонированием для получения деминерализованной воды производительность 100 л/час, активно использующая высокие окислительные свойства озона. Он способен окислить как растворенные соли, так и металлы. При этом предотвращается опасность использования препаратов хлора, озонирование воды очищенной в системах водоподготовки позволяет не только обезвредить химикаты, но и насытить жидкость кислородом, образующимся в результате реакции окисления. Такой способ дает возможность избежать применения таких химикатов, как хлор, гипохлорит натрия и др. Он решает главную проблему фильтрации Н2О для ТЭЦ - это ее обессоливание и обезжелезивание. Применяемые картриджи для станции озоновой водоподготовки Feed Water практически полностью очищают жидкость до состояния готовой к употреблению. Метод не получил повсеместного распространения из-за своей высокой энергозатратности. Постоянная выработка оборудованием озона требует большого количества электричества, что для многих предприятий слишком дорого.

С целью снижения расходов многие предприятия отдают предпочтение автоматическому управлению процессом водоподготовки для ТЭС, doc сертификаты которых говорят о соответствии техники всем установленным стандартам. Применение современных фильтров для обессоливания или осветления Н2О обеспечивает высокие результаты, которые уберегут технику от образования накипи и коррозий. Многие процессы и аппараты, расчет оборудования и устройств водоподготовки на ТЭС способны не только полностью очистить жидкость, но и значительно сократить издержки, поскольку даже тонкий слой накипи на трубах способствует увеличению энергозатрат для нагрева их до нужной температуры. Одной из важнейших задач водоподготовка на ТЭЦ ставит устранение известкового налета. Для решения этой проблемы используют приборы для водоподготовки обессоливания в паровом котле при помощи коагулянтов или флокулянтов. Наиболее распространенным является термический метод. Суть его заключается в увеличении температуры жидкости до такого показателя, при котором будут разрушаться соли вредных веществ. Метод подходит не для всех случаев, потому что растворяет лишь часть химикатов. Более действенным считается магнитная водоподготовка, использование ультразвука для ТЭЦ, которые не только разрушают соли кальция и магния при помощи постоянного магнитного поля, но и не дают им оседать на сорбционных элементах. Они откладываются в виде мягкого шлама в специальных резервуарах. Данный метод эффективен не только для умягчения жидкости, но также хорошо зарекомендовал себя в борьбе с бактериями и другими химическими веществами.

Водоподготовка парогенераторов на ТЭЦ

Очень важным моментом является причины и последствия загрязнения насыщенного пара в водоподготовке, исправность парогенератора, выбор метода фильтрации Н2О. Требования, предъявляемые к жидкости, зависят от страны-производителя парогенератора. Так, для иностранной техники могут не подойти отечественные водоочистные сооружения. В результате недостаточной фильтрации Н2О может произойти поломка аппарата. По этой причине очень важно не допускать остатка в жидкости солей, железа, бактерий и прочих загрязнителей. Очень важно контролировать баланс воды, установки GENODOS тип dm1/20 s для комплексонатной водоподготовки позволяют точно дозировать химические реагенты, достигая их оптимальной концентрации. О том, какие новые реагенты, дозирующие установки сейчас используются на станциях можно проконсультироваться у специалистов нашей компании. Ими будет предложена оптимальная водоподготовка на ТЭС , включая наиболее эффективные методы и реагенты.

Помимо устранения солей из жидкостей очень важной для ТЭЦ является нейтрализация железа, находящегося в ней. Его присутствие может привести к поломке парогенератора.. Для решения этой проблемы можно использовать аппарат электромагнитной водоподготовки Т 20, который при помощи ионного обмена нейтрализует анионы и катионы железа. Кроме устранения этого вещества, аппарат справляется также с множеством других видов загрязнений. Такие процессы, как деминерализация, обеззараживание оборотной воды на ТЭЦ могут осуществляться при помощи УФ-излучения. Для этого необходимы специальные камеры с входом и выходом для Н2О и лампой, которая и будет основным элементом этой схемы. Жидкость, подвергшаяся воздействию УФ-лучей, будет направляться в парогенератор, а образовавшийся шлам удаляется из резервуара. Метод настолько же прост, насколько и эффективен. Стандартная водоподготовка на ТЭЦ хво обезжелезивание, при которой является обязательной процедурой, может проходить как с использованием реагентов, так и без них. Для фильтрации железа можно применять системы обратного осмоса, озонирование, ионообменный метод и другие. Выбор зависит от объемов используемой жидкости и степени ее загрязнения. Нельзя говорить об универсальности какого-либо способа, потому что каждый из них имеет свои плюсы и минусы, характерные только для него.

Деминерализация и водоподготовка на ТЭЦ

Общая стоимость монтажа водоподготовки для деминерализованной минеральной воды парогенераторов зависит от факторов, упомянутых выше. Она рассчитывается индивидуально и может возрастать в зависимости от роста требований к качеству конечного продукта, предъявляемыми надзорными организациями и самими руководителями ТЭЦ.

Для водоподготовки на заводах по выпуску минеральных вод обязательным будет ее обеззараживание при помощи УФ-излучения или озонирования. Система фильтрации будет в этом случае состоять из нескольких этапов, на каждом из которых задействована своя методика. Необходимо также учитывать инженерно экологические аспекты водоподготовки, их влияние на окружающую среду и здоровье человека.

Стоки, образующиеся в ходе использования жидкости, не должны содержать веществ, угрожающих экологическому равновесию природного комплекса. Все токсичные и опасные вещества должны быть удалены еще до сброса вод в водоемы. Главное, что обязана учитывать водоподготовка в тепловых сетях, теплоэнергетике, теплоснабжении, - это фильтрация жидкости от солей кальция, магния и железа. Именно эти вещества становятся причиной порчи техники и увеличение расходов на осуществление теплообменных реакций. Очищение жидкости перед использованием ее на ТЭЦ является не только необходимой мерой для соблюдения предписаний санитарных служб, но и реальной возможностью значительно сократить расходы организации. Это происходит благодаря повторному использованию Н2О, сохранности парогенераторов, котлов и прочей техники. Современные руководители уже давно поняли, что вложения в очистительные сооружения очень быстро окупаются и помогают повысить рентабельность предприятия.

Эффективная работа теплового оборудования ТЭЦ невозможна без эксплуатации производственной (сетевой и подпиточной) воды нормативного качества. Несоблюдение отраслевых стандартов приводит к:

  • повышенному расходу энергоресурсов;
  • учащению профилактических работ по очистке теплопроводов и теплообменников от нерастворимых образований;
  • ускоренному износу оборудования, внеплановым ремонтам и даже серьезным авариям.

Нормативы подготовки воды для ТЭЦ

Работа водоподготавливающего оборудования теплогенерирующих предприятий (ТЭС, ГРЭС, ТЭЦ и т.п.) регламентируется РД 24.031.120-91, ГОСТ 20995-75, методы контроля качества производственной воды тепловых станций – ОСТ 34-70-953.23-92, ОСТ 34-70-953.13-90, а также прочей техдокументацией и техусловиями.

Ключевые задачи водоподготовки для ТЭЦ:

  • снижение рисков образования наростов на пути теплоносителя, вызванных накоплением взвешенных частиц, солевыми отложениями, биологическими образованиями;
  • препятствование коррозии металлических элементов системы;
  • получение водного и парового теплоносителя высокого качества;
  • повышение КПД тепловых машин и транспортных коммуникаций, как следствие, минимизация эксплуатационных расходов.

Этапы водоподготовки для ТЭЦ

Установки, включенные в схему водоподготовки ТЭЦ, должны обеспечивать, определенные требованиями РД 24.031.120-91 уровни:

Доведение параметров производственной воды до требуемых уровней возлагается на комплекс водоподготовки, включающий следующие основные этапы:

1. Отделение крупных механических и коллоидных взвесей.

На этом этапе водоподготовки для ТЭЦ осуществляется извлечение из подпиточной жидкости нерастворенных частиц, всегда присутствующих в ней в виде мелкого и пылеватого песка, иловых, органических, а также прочих мелкодисперсных составляющих. Механические взвеси усиливают абразивную нагрузку на оборудование ТЭЦ, способствуют увеличению гидравлического сопротивления в трубопроводах за счет формирования твердых отложений на их внутренних стенках.

Рабочим телом традиционных фильтров для улавливания нерастворимых частиц являются насыпные материалы (гравий, песок). Для ультратонкой очистки может использовать более современный вариант фильтрации на основе волоконных мембран.

2. Осаждение осадкообразующих химических соединений.

Методы этого этапа направлены на выделение из раствора ионов элементов, которые при нагреве образуют нерастворимые соединения, накапливающиеся в системе, так же как и механические взвеси. В основном подобная проблема возникает с солями магния, кальция, а также солями и окислами железа.

Задача системы водоподготовки ТЭЦ по обессоливанию питательной воды решается реагентными, обратноосмотическими, ионообменными, магнитными и прочими технологиями промышленного масштаба. В каталоге компании «ВВТ Рус» представлен обширный ассортимент средств немецкого производства для решения этих задач.

3. Связывание коррозионных химических соединений.

Агрессивные химические вещества, присутствующие в водных растворах, представляют не меньшую опасность, чем инертные солевые отложения. К числу таких веществ, в первую очередь, относятся растворенные газы – кислород и углекислота. Они способствуют интенсивной коррозии металлов, причем интенсивность процесса с повышением температуры теплоносителя нарастает лавинообразно. Проблема решается методами дегазации, ионного обмена, введением в теплоноситель профильных реагентов.

Компания ВВТ РУС реализует реагентные составы для химводоподготовки для ТЭЦ в полном соответствии с действующими нормативами. Препараты способны одновременно решать задачи второго и третьего этапов нормализации качества воды для любого оборудования теплоэнергетики. Подобный подход позволяет значительно упростить построение всей схемы водоподготовки, а также обеспечить потребителю экономию средств.

Более подробную информацию о продукции можно получить у наших сотрудников.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Южно-Уральский государственный университет» (национальный исследовательский

университет) в г.Сатке

Контрольная работа

по дисциплине «Общая энергетика»

тема: «Химическая водоочистка на ТЭЦ»

ВВЕДЕНИЕ

Потребление энергии является обязательным условием существования человечества. Наличие доступной для потребления энергии всегда было необходимо для удовлетворения потребностей человека, увеличения продолжительности и улучшения условий его жизни. История цивилизации - история изобретения все новых и новых методов преобразования энергии, освоения ее новых источников и в конечном итоге увеличения энергопотребления. Первый скачок в росте энергопотребления произошел, когда человек научился добывать огонь и использовать его для приготовления пищи и обогрева своих жилищ. Источниками энергии в этот период служили дрова и мускульная сила человека. Следующий важный этап связан с изобретением колеса, созданием разнообразных орудий труда, развитием кузнечного производства. К XV в. средневековый человек, используя рабочий скот, энергию воды и ветра, дрова и небольшое количество угля, уже потреблял приблизительно в 10 раз больше, чем первобытный человек. Особенно заметное увеличение мирового потребления энергии произошло за последние 200 лет, прошедшие с начала индустриальной эпохи, -- оно возросло в 30 раз и достигло в 2001 г. 14,3 Гт у.т/год. Человек индустриального общества потребляет в 100 раз больше энергии, чем первобытный человек, и живет в 4 раза дольше. В современном мире энергетика является основой развития базовых отраслей промышленности, определяющих прогресс общественного производства. Во всех промышленно развитых странах темпы развития энергетики опережали темпы развития других отраслей. Электрическая станция - энергетическая установка, служащая для преобразования какого-либо энергии в электрическую. Тип электрической станции определяется, прежде всего, видом энергоносителя. Наибольшее распространение получили тепловые электрические станции (ТЭС), на которых используется тепловая энергия, выделяемая при сжигании органического топлива (уголь, нефть, газ и др.). На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.

В зависимости от источника энергии различают: - тепловые электростанции (ТЭС), использующие природное топливо; - гидроэлектростанции (ГЭС), использующие энергию падающей воды запруженных рек;

Атомные электростанции (АЭС), использующие ядерную энергию; - иные электростанции, использующие ветровую, солнечную, геотермальную и другие виды энергий.

В нашей стране производится и потребляется огромное количество электроэнергии. Она почти полностью вырабатывается тремя основными типами электростанций: тепловыми, атомными и гидроэлектростанциями.

В России около 75% энергии производится на тепловых электростанциях. ТЭС строят в районах добычи топлива или в районах потребления энергии. ГЭС выгодно строить на полноводных горных реках. Поэтому наиболее крупные ГЭС построены на сибирских реках. Енисее, Ангаре. Но также построены каскады ГЭС и на равнинных реках: Волге, Каме. теплофикационный электростанция турбина водоочистка

АЭС построены в районах, где потребляется много энергии, а других энергоресурсов не хватает (в западной части страны).

Основным типом электростанций в России являются тепловые (ТЭС). Эти установки вырабатывают примерно 67% электроэнергии России.

На их размещение влияют топливный и потребительский факторы. Наиболее мощные электростанции располагаются в местах добычи топлива. ТЭС, использующие калорийное, транспортабельное топливо, ориентированы на потребителей.

1. ТЕПЛОФИКАЦИОННЫЕ ЭЛЕКТРОСТАНЦИИ (ТЭЦ)

Этот вид электростанций предназначен для централизованного снабжения промышленных предприятий и городов тепловой и электрической энергией. Являясь, как и КЭС, тепловыми станциями, они отличаются от последних использованием тепла «отработавшего» в турбинах пара для нужд промышленного производства, а также для отопления, кондиционирования воздуха и горячего водоснабжения. При такой комбинированной выработке электрической и тепловой энергии достигается значительная экономия топлива по сравнению с раздельным энергоснабжением, т. е. выработкой электроэнергии на КЭС и получением тепла от местных котельных. Поэтому ТЭЦ получили широкое распространение в районах (городах) с большим потреблением тепла и электроэнергии. В целом на ТЭЦ производится до 25% всей электроэнергии, вырабатываемой в стране.

Части схемы, которые по своей структуре подобны таковым для КЭС, здесь не указаны. Основное отличие заключается в специфике пароводяного контура и в способе выдачи электроэнергии.

Рис. 1. Особенности технологической схемы станции типа ТЭЦ:

1 -- сетевой насос; 2 -- сетевой подогреватель

Как видно из рис. 1, пар на производство берется из промежуточных отборов турбины, после того как он отдал значительную часть энергии при давлении 10--20 кгс/см2, в то время как первичные его параметры перед турбиной составляют 90--130 кгс/см2.

Для теплоснабжения отбирается пар при давлении 1,2-- 2,5 кгс/см2 и поступает в сетевые подогреватели 2 (рис. 1). Здесь он отдает тепло сетевой воде и конденсируется. Конденсат греющего пара возвращается в главный пароводяной контур, а вода, нагнетаемая в подогреватели сетевыми насосами 1, направляется на нужды теплофикации.

Ясно, что, чем больше коммерческий отпуск тепла (т. е. тепловое потребление) и чем меньше тепла бесполезно уносится циркуляционной водой, тем экономичнее процесс производства электроэнергии на ТЭЦ.

В целом КПД ТЭЦ превышает КПД КЭС. В зависимости от величины теплового потребления он может составить 50--80%.

Если потребления тепла нет или оно мало, ТЭЦ может вырабатывать электроэнергию в конденсационном режиме. Однако в этом режиме агрегаты ТЭЦ уступают по технико-экономическим показателям агрегатам КЭС.

Специфика электрической части ТЭЦ определяется положением станции вблизи центров электрических нагрузок. В этих условиях часть мощности может выдаваться в местную сеть непосредственно на генераторном напряжении. С этой целью на станции создается обычно генераторное распределительное устройство (ГРУ). Избыток мощности выдается, как в случае КЭС, в систему на повышенном напряжении.

Существенной особенностью ТЭЦ является также повышенная мощность теплового оборудования по сравнению с электрической мощностью станции с учетом выдачи тепловой энергии. Это обстоятельство предопределяет больший относительный расход электроэнергии на собственные нужды, чем в случае КЭС.

2. ХИМИЧЕСКАЯ ВОДООЧИСТКА НА ТЭЦ

В теплоэнергетике основным теплоносителем является вода и образующийся из нее пар. Содержащиеся в воде примеси, попадающие в паровой котел с питательной водой, а в водогрейный - с сетевой, образуют на поверхности теплообмена низкотеплопроводные отложения и накипь, которые теплоизолируют поверхность изнутри, а так же вызывают коррозию. Процессы коррозии в свою очередь являются дополнительным источником поступления примесей в воду.

В результате растет термическое сопротивление стенки, снижается теплопередача, а, следовательно, повышается температура уходящих газов, что ведет к уменьшению КПД котла и перерасходу топлива. При чрезмерных повышениях температуры металла труб уменьшается их прочность, вплоть до создания аварийной ситуации.

При низких и средних давлениях в барабанных котлах примеси попадают в пар только вследствие уноса капелек котловой воды, т. е. если недостаточно эффективна осушка аппарата. При высоких давлениях примеси начинают растворяться в паре и тем интенсивнее, чем выше давление, и, в первую очередь, кремниевая кислота.

Поэтому с ростом давления значительно повышаются требования к качеству питательной и добавочной воды. Требования к надежности водного режима сформулированы в виде норм водного режима в правилах технической эксплуатации электрических станций и сетей (ПТЭ) и в правилах устройства и безопасной эксплуатации паровых и водогрейных котлов.

Наличие отложений вызывает необходимость очистки оборудования, а это трудоемкая и дорогостоящая операция. Таким образом, обработка воды является необходимым атрибутом любой котельной. Чистота воды и пара в отдельных агрегатах и частях трактов котельной, объединяемая общим понятием водного режима котельной, оказывает существенное влияние на экономичность и надежность ее работы.

2.1 Водоподготовка на ТЭЦ

Одним из самых важных вопросов в энергетике была и остается водоподготовка на ТЭЦ. Для предприятий энергетики вода - основной источник их работы и потому к ее содержанию предьявляются очень высокие требования. Поскольку Россия - страна с холодным климатом, постоянными сильными морозами, то работа ТЭЦ - это, то от чего зависит жизнь людей. Качество воды, подаваемой на теплоэгергоцентраль влияет очень сильно на ее работу. Жесткая вода выливается в очень серьезную проблему для паровых и газовых котельных, а также паровых турбин ТЭЦ, которые обеспечивают город теплом и горячей водой. Чтобы четко понимать, как и на что именно отрицательно влияет жесткая вода, не мешало бы сперва разобраться, что такое ТЭЦ? И с чем ее "едят"? Итак, ТЭЦ - теплоэнергоцентраль - это разновидность тепловой станции, которая не только обеспечивает теплом город, но и поставляет в наши дома и на предприятия горячую воду. Такая электростанция устроена как конденсационная электростанция, но отличается от нее тем, что может отобрать часть теплового пара, уже после того, как он отдал свою энергию.

Паровые турбины бывают разными. В зависимости от вида турбины и отбирается пар с различными показателями. Турбины на энергоцентрали позволяют регулировать количество отбираемого пара. Пар, который был отобран, проходит конденсацию в сетевом подогревателе или подогревателях. Вся энергия из него передается сетевой воде. Вода в свою очередь идет на пиковые водогрейные как котельные, так и тепловые пункты. Если на ТЭЦ перекрываются пути отбора пара, она становится обычной КЭС. Таким образом, теплоэнергоцентраль может работать по двум различным графикам нагрузки:

· тепловой график - прямопропорциональная зависимость электрической нагрузки от тепловой;

· электрический график - тепловой нагрузки либо нет вообще, либо электрическая нагрузка от нее не зависит. Достоинство ТЭЦ состоит в том, что она совмещает как тепловую энергию, так и электрическую. В отличии от КЭС, оставшееся тепло не пропадает, а идет на отопление. В результате растет коэффициент полезного действия электростанции. У водоподготовки на ТЭЦ он составляет 80 процентов против 30 процентов у КЭС. Правда, об экономичности теплоэнергоцентрали это не говорит. Здесь в цене другие показатели - удельная выработка электричества и КПДцикла. К особенностям расположения ТЭЦ следует отнести тот факт, что строить ее следует в черте города. Дело в том, что передача тепла на расстояния нецелесообразна и невозможна. Поэтому водоподготовка на ТЭЦ всегда строят рядом с потребителями электроэнергии и тепла. Из чего состоит оборудование водоподготовки для ТЭЦ? Это турбины и котлы. Котлы производят пар для турбин, турбины из энергии пара производят энергию электричества. Турбогенератор включает в себя паровую турбину и синхронный генератор. Пар в турбинах получают за счет применения мазута и газа. Эти вещества и нагревают воду в котле. Пар под давлением прокручивает турбину и на выходе получается электроэнергия. Отработанный пар поступает в дома в виде горячей воды для бытовых нужд. Потому то, отработанный пар и должен иметь определенные свойства. Жесткая вода со множеством примесей не даст получить качественный пар, который к тому же можно потом поставить людям для использования в быту. Если пар не отправляют на поставку горячей воды, то его тут же в ТЭЦ охлаждают в градирнях. Если вы видели когда-нибудь огромные трубы на тепловых станциях и как их них валит дым, то это и есть градирни, а дым, вовсе не дым, а пар, который подымается от них, когда происходит конденсация и охлаждение. Как работает водоподготовка на ТЭ? Больше всего влиянию жесткой воды здесь поддается турбина и, конечно же, котлы, которые преобразовывают воду в пар. Главная задача любой ТЭЦ получить в котле чистую воду. Чем так плоха жесткая вода? Каковы ее последствия и почему они обходятся нам так дорого? Жесткая вода отличается от обычной высоким содержанием солей кальция и магния. Именно эти соли под воздействием температуры оседают на нагревательном элементе и стенках бытовых приборов. То же относится и к паровым котлам. Накипь образовывается в месте нагрева и точке кипения по краям самого котла. Удаление накипи в теплообменнике в таком случае затруднено, т.к. накипь нарастает на огромном оборудовании, внутри труб, всевозможных датчиков, систем автоматизации. Промывка котла от накипи на таком оборудовании - это целая многоэтапная система, которая может даже проводится при разборе оборудования. Но это в случае высокой плотности накипи и больших ее залежей. Обычное средство от накипи в таких условиях конечно не поможет. Если говорить о последствиях жесткой воды для быта, то это и влияние на здоровье человека и удорожание использования бытовых приборов. К тому же жесткая вода очень плохо контактирует с моющими средствами. Вы станете использовать на 60 процентов больше порошка, мыла. Расходы будут расти как на дрожжах. Умягчение воды потому и было придумано, чтобы нейтрализовать жесткую воду, ставишь себе в квартиру один умягчитель воды и забываешь, что есть очистка от накипи, средство от накипи.

Накипь отличается еще и плохой теплопроводимостью. Этот ее недостаток главная причина поломок дорогой бытовой техники. Покрытый накипью тепловой элемент просто перегорает, силясь отдать тепло воде. Плюс из-за плохой растворимости моющих средств, стиральную машинку нужно дополнительно включать на полоскание. Это расходы воды, электричества. С любой стороны, умягчение воды - самый верный и экономически выгодный вариант предотвращения образования накипи. А теперь представьте что такое водоподготовка на ТЭЦ в промышленных масштабах? Там средство от накипи используется галлонами. Промывка котла от накипи проводится периодически. Бывает регулярной и ремонтной. Чтобы удаление накипи проходило более безболезненно и нужна водоподготовка. Она поможет предотвратить образование накипи, защитит и трубы и оборудование. С ней жесткая вода не будет оказывать свое разрушительное воздействие в таких угрожающихмасштабах. Если говорить о промышленности и энергетике, то больше всего жесткая вода приносит неприятностей ТЭЦ и котельным. То есть в тех областях, где происходит непосредственно водоподготовка и нагрев воды и перемещение этой теплой воды по трубам водоснабжения. Умягчение воды здесь необходимо, как воздух. Но поскольку водоподготовка на ТЭЦ это работа с огромными обьемами воды, водоподготовка должна быть тщательно просчитана и продумана с учетом всевозможным нюансов. От анализа химического состава воды да места расположения того или иного умягчителя воды. В ТЭЦ водоподготовка - это не только умягчитель воды, это еще и обслуживание оборудования после. Ведь удаление накипи все равно в этом производственном процессе придется делать, с определенной периодичностью. Здесь применяется не одно средство от накипи. Это может быть и муравьиная кислота, и лимонная, и серная. В различной концентрации, обязательно в виде раствора. И применяют тот или иной раствор кислот в зависимости от того из каких составных частей сделан котел, трубы, контроллер и датчики. Итак, на каких обьектах энергетики нужна водоподготовка? Это котельные станции, котлы, это тоже часть ТЭЦ, водонагревательные установки, трубопроводы. Самыми слабыми местами и ТЭЦ в том числе, остаются трубопроводы. Накапливающаяся здесь накипь может привести и к истощению труб и их разрыву. Когда накипь не удаляется во время, то она просто не дает воде нормально проходить по трубам и перегревает их. Наряду с накипью второй проблемой оборудования в ТЭЦ является коррозия. Ее также нельзя спускать на самотек. К чему может привести толстый слой накипи в трубах, которые подводят воду на ТЭЦ? Это сложный вопрос, но ответим на него мы теперь зная, что такое водоподготовка на ТЭЦ. Поскольку накипь - отменный теплоизолятор, то и расход тепла резко растет, а теплоотдача наоборот снижается. КПД котельного оборудования падает в разы, все это в результате может привести и к разрыву труб и взрыву котла.

Водоподготовка воды на ТЭЦ, это то, на чем нельзя экономить. Если в быту, вы все же подумаете, купить ли умягчитель воды или выбрать средство от накипи, то для теплового оборудования такой торг недопустим. На теплоэнергоцентралях подсчитывают каждую копейку, поэтому очистка от накипи при отсутствии системы умягчения обойдется куда дороже. Да и сохранность приборов, их долговечность и надежная эксплуатация тоже играют свою роль. Очищенное от накипи оборудование, трубы, котлы работают на 20-40 процентов эффективнее, чем оборудование не прошедшее очистку или работающее без системы умягчения. Главная особенность водоподготовки воды на ТЭЦ состоит в том, что здесь требуется глубоко обессоленная вода. Для этого нужно использовать точное автоматизированное оборудование. На таком производстве чаще всего применяют установки обратного осмоса и нанофильтрации, а также электродеионизации. Какие этапы включает в себя водоподготовка в энергетике в том числе и на теплоэнергцентрали? Первый этап включает в себя механическую очистку от всевозможных примесей. На этом этапе из воды удаляются все взвешенные примеси, вплоть до песка и микроскопических частиц ржавчины и т.п. Это так называемая грубая очистка. После нее вода выходит чистой для глаз человека. В ней остаются только растворенные соли жесткости, железистые соединения, бактерии и вирусы и жидкие газы.

Разрабатывая систему водоподготовки воды нужно учитывать такой нюанс, как источник водопоставки. Это водопроводная вода из систем централизованного водоснабжения или это вода из первичного источника? Разница в водоподготовке состоит в том, что вода из систем водоснабжения уже прошла первичную очистку. Из нее нужно убирать только соли жесткости, и обезжелезивать при необходимости. Вода из первичных источников - это вода абсолютно не обработанная. То есть, имеем дело с целым букетом. Здесь обязательно нужно проводить химический анализ воды, чтобы понимать с какими примесями имеем дело и какие фильтры ставить для умягчения воды и в какой последовательности. После грубой очистки в системе идет следующий этап под названием ионообменное обезсоливание. Здесь устанавливают ионообменный фильтр. Работает на основе ионообменных процессов. Главный элемент - ионообменная смола, которая включает в себя натрий. Он образует со смолой непрочные соединения. Как только жесткая вода на ТЭЦ попадает в такой умягчитель, то соли жесткости мгновенно выбивают натрий из структуры и прочно встают на его место. Восстанавливается такой фильтр очень просто. Картридж со смолой перемещается в бак регенерации, где находится насыщенный соляной раствор. Натрий снова занимает свое место, а соли жесткости вымываются в дренаж. Следующий этап - это получение воды с заданными характеристиками. Здесь применяют установку водоподготовки воды на ТЭЦ. Главное ее достоинство - получение 100-процентно чистой воды, с заданными показателями щелочности, кислотности, уровнем минерализации. Если предприятию нужна техническая вода, то установка обратного осмоса создавалась именно на такие случаи.

Главной составляющей частью этой установки является полунепроницаемая мембрана. Селективность мембраны меняется, в зависимости от ее сечения можно получить воду с разными характеристиками. Эта мембрана разделяет бак на два части. В одной части находится жидкость с высоким содержанием примесей, в другой части жидкость с низким содержанием примесей. Воду запускают в высококонцентрированный раствор, она медленно просачивается через мембрану. На установку подается давление, под воздействием его вода останавливается. Потом давление резко увеличивают, и вода начинает течь обратно. Разность этих давлений называют осматическим давлением. На выходе получается идеально чистая вода, а все отложения остаются в менее концентрированном растворе и выводятся в дренаж.

Нанофильтрация по сути тот же обратный осмос, только низконапорный. Поэтому принцип действия тот же, только напор воды меньше. Следующий этап - устранение из воды, растворенных в ней газов. Поскольку в ТЭЦ нужен чистый пар без примесей, очень важно удалить из воды, растворенные в ней кислород, водород и углекислый газ. Устранение примесей жидких газов в воде называется декарбонацией и деаэрацией. После этого этапа вода готова для подачи в котлы. Пар получается именно той концентрации и температуры, которая необходима.

Как видно, из всего вышеописанного, водоподготовка воды в ТЭЦ - один самых главных составляющих производственного процесса. Без чистой воды, не будет качественного хорошего пара, а значит, не будет электричества в нужном обьеме. Поэтому водоподготовкой в теплоэнергоцентралях нужно заниматься плотно, доверять эту службу исключительно профессионалам. Правильно спроектированная система водоподготовки - это гарантия долгосрочной службы оборудования и получения качественных услуг энергопоставок.

2.2 Химическая очистка воды

Большинство современных предприятий используют водоочистные сооружения для фильтрации стоков с целью их последующего использования. В связи с нахождением в них большого количества вредоносных веществ - остатков техногенного производства, простого механического очищения ставится недостаточно. По этой причине для полной химической очистки воды используют технологии и установки, которые производят очищение жидкости при помощи химических реагентов. Грамотное применение таких способов позволяет добиться очень высоких результатов и устранить загрязнения любого типа. В зависимости от данных химико-биологического анализа жидкости используются соответствующие виды химических, биохимических веществ для очистки воды, максимально удовлетворяющие всем предъявляемым требованиям.

Используя полученные данные о составе Н2О, ученые лабораторным путем устанавливают, какие химические реакции происходят при очистке воды с той или иной концентрацией реагентов. Поскольку активным в этом процессе является вещество, используемое в качестве реагента, то во избежание его передозировки следует строго соблюдать предложенные специалистами пропорции. В некоторых случаях использование таких добавок невозможно потому, что ущерба от них будет намного больше, чем пользы. В таких ситуациях применяют биологические активные вещества, способные окислить практически все загрязнения, не принося вреда окружающей среде. Перед их использованием не будет лишним подробнее узнать, какие анализы производят при аэробной биохимической очистке воды. Одним из самых распространенных исследований является биохимическое потребление кислорода, которое говорит о том, насколько микроорганизмам хватает О2 для их нормального функционирования и окисления вредных веществ. Помимо этого показателя также учитывается и химико-биологический анализ жидкости.

Нередко в стоках можно встретить хром - токсичное вещество, вызывающее аллергические реакции и очень опасное для человеческого организма. Его нейтрализация также важна, как и обессоливание, обезжелезивание Н2О. Для этого необходимо провести химическую очистку воды от хрома методом электрокоагуляции. Жидкость подвергается электрофорезу, вследствие чего молекула хрома делится на анионы и катионы. Гидроксиды алюминия и железа, имеющие высокую сорбционную способность, притягивают их, образовывая нерастворимый хлопьевидный осадок. Преимущества такого метода заключаются в отсутствии реагентов, выступающих качестве солей.

Химическая очистка воды от железа и кальция

Одним из самых распространенных загрязнителей является окись железа, характеризующаяся специфичным цветом и металлическим вкусом. В случае, когда ее количество невелико, в качестве реагента может быть применен кислород. Часто таким способом происходит очищение воды из скважины, содержащей окись железа. Суть этого метода заключается в том, что при помощи компрессора Н2О насыщается О2. Для успешного протекания реакции между железом и кислородом пименяется катализатор - магний. Результатом реакции становится получение трехвалентного железа, которое легко удерживается сетчатыми фильтрами.

В тех случаях, когда необходимо произвести обезжелезивание, умягчение, нейтрализацию и химическую очистку ржавой воды в скважине, используются более сильные реагенты. К ним относится гипохлорит натрия, который окисляет практически все соли, металлы и органические вещества. В случае, если жидкость в дальнейшем не будет задействована в производстве, а ее фильтрация необходима для возвращения в природную среду, стоит задействовать более щадящие методы. Особого внимания заслуживает промышленная очистка воды ТЭЦ химическими реагентами от кальция, защищающая трубы от образования известкого налета. Даже небольшой слой накипи на трубах способствует снижению коэффициента теплопередачи и возрастанию расхода топлива. Для решения этой проблемы может быть использован метод известкования, когда в жидкость добавляют раствор гашеной извести с уровнем рН не более 10. В итоге можно наблюдать следующий пример реакции химической очистки воды:

Ca(HCO3)2 + Ca(OH)2 = 2 CaCO3 + 2Н2O Mg(HCO3)2 + 2 Ca(OH)2 = Mg(OH)2 + 2СaCO3 + 2Н2O.

В результате образуются нерастворимые соли, которые затем удаляются из резервуара. Очень важно, чтобы реакции химической системы очистки воды, а также контроль над температурой и давлением производились постоянно. В противном случае могут возникнуть трудности в утилизации шламов, повышение мутности жидкости.

Выбор реагентов для химической подготовки промышленной воды во многом зависит от характера загрязнений, а также от финансовых возможностей предприятия. Химическая очистка воды сочетается усилиями многих организаций с использованием гипохлорита натрия, что объясняется его высокой эффективность и низкой стоимостью. По результатам фильтрации конкуренцию ему может составить метод озонирования, который абсолютно безвреден для человека, но его стоимость будет значительно выше. На многих предприятиях используются котельные установки, требующие тщательной фильтрации Н2О перед их использованием. Такая потребность обусловлена защитой от образования известкого налета и коррозий. Химическая очистка воды котельной установки осуществляется при помощи электрохимического окисления или добавления в жидкость специального раствора против образования накипи. Первый метод является более безопасным, поскольку в нем не используется реагентов, а удаление солей происходит за счет воздействия на них магнитного поля. Второй метод применяется не так часто и используется для профилактики.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Гительман Л.Д, Ратников Б.Е. Энергетический бизнес. - М.: Дело, 2006. - 600 с.

2. Основы энергосбережения: Учеб. пособие / М.В. Самойлов, В.В. Паневчик, А.Н. Ковалев. 2-е изд., стереотип. - Мн.: БГЭУ, 2002. - 198 с.

3. Стандартизация энергопотребления - основа энергосбережения / П.П. Безруков, Е.В. Пашков, Ю.А. Церерин, М.Б. Плущевский //Стандарты и качество, 1993.

4. И.Х.Ганев. Физика и расчет реактора. Учебное пособие для вузов. М, 1992, Энергоатомиздат.

5. Рыжкин В. Я., Тепловые электрические станции, М., 1976.

Размещено на Allbest.ru

...

Подобные документы

    Производство электрической энергии. Основные виды электростанций. Влияние тепловых и атомных электростанций на окружающую среду. Устройство современных гидроэлектростанций. Достоинство приливных станций. Процентное соотношение видов электростанций.

    презентация , добавлен 23.03.2015

    Принцип работы тепловых паротурбинных, конденсационных и газотурбинных электростанций. Классификация паровых котлов: параметры и маркировка. Основные характеристики реактивных и многоступенчатых турбин. Экологические проблемы тепловых электростанций.

    курсовая работа , добавлен 24.06.2009

    Паровая турбина как один из элементов паротурбинной установки. Паротурбинные (конденсационные) электростанции для выработки электрической энергии, их оснащение турбинами конденсационного типа. Основные виды современных паровых конденсационных турбин.

    реферат , добавлен 27.05.2010

    Описание тепловой схемы станции, компоновки оборудования газового хозяйства, химической водоочистки питательной воды, выбор и эксплуатация основного оборудования. Автоматизация тепловых процессов и расчеты характеристик котельной и основных затрат.

    дипломная работа , добавлен 29.07.2009

    Способы и основные этапы подготовки воды для подпитки и заполнения контуров АЭС на водоподготовительной установке. Разновидности и конструкция фильтров. Системы обеспечения безопасности работы АЭС, виды сбросов и их утилизация, взрывопожаробезопасность.

    дипломная работа , добавлен 20.08.2009

    Разработка проекта и расчет электрической части тепловой пылеугольной электростанции. Выбор схемы ТЭЦ, коммутационных аппаратов, измерительных и силовых и трансформаторов. Определение целесообразного способа ограничения токов короткого замыкания.

    курсовая работа , добавлен 18.06.2012

    Конструкция корпуса атомной турбины. Методы крепления корпуса к фундаментной плите. Материалы для отливки корпусов паровых турбин. Паровая конденсационная турбина типа К-800-130/3000 и ее назначение. Основные технические характеристики турбоустановки.

    реферат , добавлен 24.05.2016

    История развития паровых турбин и современные достижения в данной области. Типовая конструкция современной паровой турбины, принцип действия, основные компоненты, возможности увеличения мощности. Особенности действия, устройства крупных паровых турбин.

    реферат , добавлен 30.04.2010

    Выбор основного энергетического оборудования, паровых турбин. Высотная компоновка бункерно-деаэраторного отделения электростанции. Сооружения и оборудование топливоподачи и системы пылеприготовления. Вспомогательные сооружения тепловой электростанции.

    курсовая работа , добавлен 28.05.2014

    Состав паротурбинной установки. Электрическая мощность паровых турбин. Конденсационные, теплофикационные и турбины специального назначения. Действие теплового двигателя. Использование внутренней энергии. Преимущества и недостатки различных видов турбин.



Поделиться