Формулы по кпд. Что такое кпд

КПД, по своему определению, это отношение полученной энергии к затраченной. Если двигатель сжигает бензин и только треть образовавшегося тепла превращается в энергию движения автомобиля, то КПД равен одной трети или (округляя до целых) 33%. Если лампочка дает световой энергии в пятьдесят раз меньше потребляемой электрической, ее КПД равен 1/50 или 2%. Однако тут сразу возникает вопрос: а если лампочка продается как инфракрасный обогреватель? После того как продажа ламп накаливания была запрещена, точно такие же по конструкции устройства стали продаваться как "инфракрасные обогреватели", поскольку именно в тепло преобразуется свыше 95% электроэнергии.

(Бес)полезное тепло

Обычно тепло, выделяющееся при работе чего-либо, записывают в потери. Но это далеко не бесспорно. Электростанция, например, превращает в электроэнергию примерно треть выделяющегося при сгорании газа или угля тепла, однако еще часть энергии может при этом пойти на нагрев воды. Если горячее водоснабжение и теплые батареи тоже записать в полезные результаты работы ТЭЦ, то КПД вырастет на 10-15%.

Схожим примером может служить автомобильная "печка": она передает в салон часть тепла, образующегося при работе двигателя. Это тепло может быть полезным и необходимым, а может рассматриваться как потери: по этой причине оно обычно не фигурирует в расчетах КПД автомобильного мотора.

Особняком стоят такие устройства, как тепловые насосы. Их КПД, если считать его по соотношению выданного тепла и затраченного электричества, больше 100%, однако это не опровергает основы термодинамики. Тепловой насос перекачивает тепло от менее нагретого тела к более нагретому и затрачивает на это энергию, так как без затрат энергии подобное перераспределение теплоты запрещено той же термодинамикой. Если тепловой насос берет из розетки киловатт, а выдает пять киловатт тепла, то четыре киловатта будут взяты из воздуха, воды или грунта вне дома. Окружающая среда в том месте, откуда устройство черпает тепло, остынет, а дом прогреется. Но потом эта теплота вместе с потраченной насосом энергией все равно рассеется в пространстве.

Внешний контур теплового насоса: через эти пластиковые трубы прокачивается жидкость, забирающая тепло из толщи воды в отапливаемое здание. Mark Johnson / Wikimedia

Много или эффективно?

Некоторые устройства имеют очень высокий КПД, но при этом - неподходящую мощность.

Электрические моторы тем эффективнее, чем они больше, однако поставить электровозный двигатель в детскую игрушку физически невозможно и экономически бессмысленно. Поэтому КПД двигателей в локомотиве превышает 95%, а в маленькой машинке на радиоуправлении - от силы 80%. Причем в случае с электрическим двигателем его эффективность зависит так же от нагрузки: недогруженный или перегруженный мотор работает с меньшим КПД. Правильный подбор оборудования может значить даже больше, чем просто выбор устройства с максимальным заявленным КПД.

Самый мощный серийный локомотив, шведский IORE. Второе место удерживает советский электровоз ВЛ-85. Kabelleger / Wikimedia

Если электрические моторы выпускаются для самых разных целей, от вибраторов в телефонах до электровозов, то вот ионный двигатель имеет гораздо меньшую нишу. Ионные двигатели эффективны, экономичны, долговечны (работают без выключения годами), но включаются только в вакууме и дают очень малую тягу. Они идеально подходят для отправки в дальний космос научных аппаратов, которые могут лететь к цели несколько лет и для которых экономия топлива важнее затрат времени.

Электрические моторы, кстати, потребляют почти половину всей вырабатываемой человечеством электроэнергии, так что даже разница в одну сотую процента в мировом масштабе может означать необходимость построить еще один ядерный реактор или еще один энергоблок ТЭЦ.

Эффективно или дешево?

Энергетическая эффективность далеко не всегда тождественна экономической. Наглядный пример - светодиодные лампы, которые до недавнего времени проигрывали лампам накаливания и флуоресцентным "энергосберегайкам". Сложность изготовления белых светодиодов, дороговизна сырья и, с другой стороны, простота лампы накаливания заставляли выбирать менее эффективные, но зато дешевые источники света.

Кстати, за изобретение синего светодиода, без которого бы нельзя было сделать яркую белую лампу, японские исследователи получили в 2014 году Нобелевскую премию. Это не первая премия, вручаемая за вклад в развитие освещения: в 1912 году наградили Нильса Далена, изобретателя, который усовершенствовал ацетиленовые горелки для маяков.

Синие светодиоды нужны для получения белого света в сочетании с красными и зелеными. Эти два цвета научились получать в достаточно ярких светодиодах намного раньше; синие долгое время оставались слишком тусклыми и дорогими для массового применения

Другой пример эффективных, но очень дорогих устройств - солнечные батареи на основе арсенида галлия (полупроводник с формулой GaAs). Их КПД достигает почти 30%, что в полтора-два раза выше используемых на Земле батарей на основе куда более распространенного кремния. Высокая эффективность оправдывает себя только в космосе, куда доставка одного килограмма груза может стоить почти как килограмм золота. Тогда экономия на массе батареи будет оправдана.

КПД линий электропередач можно поднять за счет замены меди на лучше проводящее ток серебро, однако серебряные кабели слишком дороги и потому используются разве что в единичных случаях. А вот к идее построить сверхпроводящие ЛЭП из дорогой и требующей охлаждения жидким азотом редкоземельной керамики в последние годы несколько раз обращались на практике. В частности, такой кабель уже проложен и подключен в германском городе Эссене. Он рассчитан на 40 мегаватт электрической мощности при напряжении в десять киловольт. Кроме того что потери на нагрев сведены к нулю (однако взамен нужно питать криогенные установки), такой кабель намного компактнее обычного и за счет этого можно сэкономить на покупке дорогой земли в центре города или отказаться от прокладки дополнительных туннелей.

Не по общим правилам

Из школьного курса многие помнят, что КПД не может превышать 100% и что он тем выше, чем больше разница температур между холодильником и нагревателем. Однако это верно лишь для так называемых тепловых двигателей: паровая машина, двигатель внутреннего сгорания, реактивные и ракетные двигатели, газовые и паровые турбины.

Электродвигатели и все электрические устройства этому правилу не подчиняются, поскольку они не тепловые машины. Для них верно только то, что КПД не может превышать ста процентов, а частные ограничения в каждом случае определяются по-разному.

В случае с солнечной батареей потери определяются как квантовыми эффектами при поглощении фотонов, так и потерями на отражение света от поверхности батареи и на поглощение в фокусирующих зеркалах. Проведенные расчеты показали, что выйти за 90% солнечная батарея не может в принципе, а на практике достижимы значения около 60-70%, да и те при весьма сложной структуре фотоячеек.

Великолепным КПД обладают топливные элементы. В эти устройства поступают некие вещества, которые вступают в химическую реакцию друг с другом и дают электрический ток. Этот процесс опять-таки не является циклом тепловой машины, поэтому КПД получается достаточно высоким, порядка 60%, в то время как дизель или бензиновый двигатель не выходят обычно за 50%.

Именно топливные элементы стояли на летавших к Луне космических кораблях "Аполло", и они могут работать, например, на водороде и кислороде. Их недостаток заключается только в том, что водород должен быть достаточно чистым и к тому же его надо где-то хранить и как-то передавать от завода к потребителям. Технологии, позволяющие заменить водородом обычный метан, пока что не доведены до массового использования. На водороде и топливных элементах работают лишь экспериментальные автомобили и некоторое количество подводных лодок.

Плазменные двигатели серии СПД. Их делает ОКБ «Факел», и они используются для удержания спутников на заданной орбите. Тяга создается за счет потока ионов, которые возникают после ионизации инертного газа электрическим разрядом. КПД этих двигателей достигает 60 процентов

Ионные и плазменные двигатели уже существуют, но тоже работают лишь в вакууме. Кроме того, их тяга слишком мала и на порядки ниже веса самого устройства - с Земли они не взлетели бы даже при отсутствии атмосферы. Зато во время межпланетных полетов длительностью в многие месяцы и даже годы слабая тяга компенсируется экономичностью и надежностью.

Содержание:

Каждая система или устройство обладает определенным коэффициентом полезного действия (КПД). Данный показатель характеризует эффективность их работы по отдаче или преобразованию какого-либо вида энергии. По своему значению КПД является безмерной величиной, представляемой в виде числового значения в пределах от 0 до 1, или в процентном отношении. Эта характеристика в полной мере касается и всех типов электрических двигателей.

Характеристики КПД в электродвигателях

Электрические двигатели относятся к категории устройств, выполняющих преобразование электрической энергии в механическую. Коэффициент полезного действия для данных устройств определяет их эффективность в деле выполнения основной функции.

Как найти кпд двигателя? Формула КПД электродвигателя выглядит так: ƞ = Р2/Р1. В этой формуле Р1 является подведенной электрической мощностью, а Р2 - полезной механической мощностью, вырабатываемой двигателем. Значение электрической мощности (Р) определяется формулой Р = UI, а механической - Р = А/t, как отношение работы к единице времени.

Коэффициент полезного действия обязательно учитывается при выборе электродвигателя. Большое значение имеют потери КПД, связанные с реактивными токами, снижением мощности, нагревом двигателя и другими негативными факторами.

Превращение электрической энергии в механическую сопровождается постепенной потерей мощности. Потеря КПД чаще всего связана с выделением тепла, когда происходит нагрев электродвигателя в процессе работы. Причины потерь могут быть магнитными, электрическими и механическими, возникающими под действием силы трения. Поэтому в качестве примера лучше всего подходит ситуация, когда электрической энергии было потреблено на 1000 рублей, а полезной работы произведено всего лишь на 700-800 рублей. Таким образом, коэффициент полезного действия в данном случае составит 70-80%, а вся разница превращается в тепловую энергию, которая и нагревает двигатель.

Для охлаждения электродвигателей используются вентиляторы, прогоняющие воздух через специальные зазоры. В соответствии с установленными нормами, двигатели А-класса могут нагреваться до 85-90 0 С, В-класса - до 110 0 С. Если температура двигателя превышает установленные нормы, это свидетельствует о возможном скором .

В зависимости от нагрузки КПД электродвигателя может изменять свое значение:

  • Для холостого хода - 0;
  • При 25% нагрузке - 0,83;
  • При 50% нагрузке - 0,87;
  • При 75% нагрузке - 0,88;
  • При полной 100% нагрузке КПД составляет 0,87.

Одной из причин снижения КПД электродвигателя может стать асимметрия токов, когда на каждой из трех фаз появляется разное напряжение. Например, если в 1-й фазе имеется 410 В, во 2-й - 402 В, в 3-й - 288 В, то среднее значение напряжения составит (410+402+388)/3 = 400 В. Асимметрия напряжения будет иметь значение: 410 - 388 = 22 вольта. Таким образом, потери КПД по этой причине составят 22/400 х 100 = 5%.

Падение КПД и общие потери в электродвигателе

Существует множество негативных факторов, под влиянием которых складывается количество общих потерь в электрических двигателях. Существуют специальные методики, позволяющие заранее их определить. Например, можно определить наличие зазора, через который мощность частично подается из сети к статору, и далее - на ротор.

Потери мощности, возникающие в самом стартере, состоят из нескольких слагаемых. В первую очередь, это потери, связанные с и частичным перемагничиванием сердечника статора. Стальные элементы оказывают незначительное влияние и практически не принимаются в расчет. Это связано со скоростью вращения статора, которая значительно превышает скорость магнитного потока. В этом случае ротор должен вращаться в строгом соответствии с заявленными техническими характеристиками.

Значение механической мощности вала ротора ниже, чем электромагнитная мощность. Разница составляет количество потерь, возникающих в обмотке. К механическим потерям относятся трения в подшипниках и щетках, а также действие воздушной преграды на вращающиеся части.

Для асинхронных электродвигателей характерно наличие дополнительных потерь из-за наличия зубцов в статоре и роторе. Кроме того, в отдельных узлах двигателя возможно появление вихревых потоков. Все эти факторы в совокупности снижают КПД примерно на 0,5% от номинальной мощности агрегата.

При расчете возможных потерь используется и формула КПД двигателя, позволяющая вычислить уменьшение этого параметра. Прежде всего учитываются суммарные потери мощности, которые напрямую связаны с нагрузкой двигателя. С возрастанием нагрузки, пропорционально увеличиваются потери и снижается коэффициент полезного действия.

В конструкциях асинхронных электродвигателей учитываются все возможные потери при наличии максимальных нагрузок. Поэтому диапазон КПД этих устройств достаточно широкий и составляет от 80 до 90%. В двигателях повышенной мощности этот показатель может доходить до 90-96%.

Энергия, подводимая к механизму в виде работы движущих сил А дв.с . и моментов за цикл установившегося движения, расходуется на совершение полезной работы А п.с . , а также на совершение работы А Fтр , связанной с преодолением сил трения в кинематических парах и сил сопротивления среды.

Рассмотрим установившееся движение. Приращение кинетической энергии равно нулю, т.е.

При этом работы сил инерции и сил тяжести равны нулю А Ри = 0 , А G = 0 . Тогда для установившегося движения работа движущих сил равна

А дв.с. =А п.с. + А Fтр .

Следовательно, за полный цикл установившегося движения работа всех движущих сил равна сумме работ сил производственных сопротивлений и непроизводственных сопротивлений (сил трения).

Механический коэффициент полезного действия η (КПД) – отношение работы сил производственных сопротивлений к работе всех движущих сил за время установившегося движения :

η = . (3.61)

Как видно из формулы (3.61), КПД показывает, какая доля механической энергии, приведенной к машине, полезно расходуется на совершение той работы, для которой машина создана.

Отношение работы сил непроизводственных сопротивлений к работе движущих сил называется коэффициентом потерь :

ψ = . (3.62)

Механический коэффициент потерь показывает, какая доля механической энергии, подведенной к машине, превращается в конечном счете в теплоту и бесполезно теряется в окружающем пространстве.

Отсюда имеем связь между КПД и коэффициентом потерь

η =1- ψ .

Из этой формулы вытекает, что ни в одном механизме работа сил непроизводственных сопротивлений не может равняться нулю, поэтому КПД всегда меньше единице (η <1 ). Из этой же формулы следует, что КПД может равняться нулю, если А дв.с =А Fтр . Движение, при котором А дв.с = А Fтр называетсяхолостым . КПД не может быть меньше нуля, т.к. для этого необходимо, чтобы А дв.с <А Fтр . Явление, при котором механизм находится в покое и при этом удовлетворяется условие А дв.с <А Fтр, называется явлением самоторможения механизма . Механизм, у которого η = 1, называется вечным двигателем .

Таким образом, коэффициент полезного действия находится в пределах

0 £ η < 1 .

Рассмотрим определение КПД при различных способах соединения механизмов.

3.2.2.1. Определение КПД при последовательном соединении

Пусть имеется n последовательно соединенных между собой механизмов (рисунок 3.16).

А дв.с. 1 А 1 2 А 2 3 А 3 А n-1 n A n

Рисунок 3.16 - Схема последовательно соединенных механизмов

Первый механизм приводится в движение движущими силами, которые совершают работу А дв.с . Так как полезная работа каждого предыдущего механизма, затрачиваемая на производственные сопротивления, является работой движущих сил для каждого последующего механизма, то КПД первого механизма будет равняться:


η 1 =А 1 /А дв.с ..

Для второго механизма КПД равняется:

η 2 =А 2 /А 1 .

И, наконец, для n-го механизма КПД будет иметь вид:

η n =А n /А n-1

Общий коэффициент полезного действия равен:

η 1 n =А n /А дв.с.

Величина общего КПД может быть получена, если перемножить КПД каждого отдельного механизма, а именно:

η 1 n = η 1 η 2 η 3 …η n = .

Следовательно, общий механический коэффициент полезного действия последовательно соединенных механизмов равняется произведению механических коэффициентов полезного действия отдельных механизмов, составляющих одну общую систему :

η 1 n = η 1 η 2 η 3 …η n .(3.63)

3.2.2.2 Определение КПД при смешанном соединении

На практике соединение механизмов оказывается более сложным. Чаще последовательное соединение сочетается с параллельным. Такое соединение называется смешанным. Рассмотрим пример сложного соединения (рисунок 3.17).

Поток энергии от механизма 2 распределяется по двум направлениям. В свою очередь от механизма 3 ¢¢ поток энергии распределяется также по двум направлениям. Общая работа сил производственных сопротивлений равна:

А п.с. = A ¢ n + A ¢ ¢ n + A ¢ ¢¢ n .

Общий КПД всей системы будет равен:

η =А п.с /А дв.с = (A ¢ n + A ¢ ¢ n + A ¢ ¢¢ n )/А дв.с . (3.64)

Чтобы определить общий КПД, нужно выделить потоки энергии, в которых механизмы соединены последовательно, и рассчитать КПД каждого потока. На рисунке 3.17 показаны сплошной линией I-I, штриховой линией II-II и штрих- пунктирной линией III-III три потока энергии от общего источника.

А дв.с. А 1 А ¢ 2 А ¢ 3 … А ¢ n-1 A ¢ n

II А ¢¢ 2 II

А ¢¢ 3 4 ¢¢ А ¢¢ 4 А ¢¢ n-1 n ¢¢ A ¢¢ n

Известно, что электрическая энергия передаётся на большие расстояния при напряжениях, превышающих уровень, используемый потребителями. Применение трансформаторов необходимо для того, чтобы преобразовывать напряжения до требуемых значений, увеличивать качество процесса передачи электроэнергии, а также уменьшать образующиеся потери.

Описание и принцип работы трансформатора

Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.

Существуют следующие типы устройств:

  • силовые;
  • измерительные;
  • малой мощности;
  • импульсные;
  • пик-трансформаторы.

Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.

Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо - КПД ), с условным обозначением. Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети. КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.

Виды потерь в трансформаторе

Процесс передачи электроэнергии с первичной обмотки на вторичную сопровождается потерями. По этой причине происходит передача не всей энергии, но большей её части.

В конструкции устройства не предусмотрены вращающиеся части, в отличие от прочих электромашин. Это объясняет отсутствие в нём механических потерь.

Так, в аппарате присутствуют следующие потери:

  • электрические, в меди обмоток;
  • магнитные, в стали сердечника.

Энергетическая диаграмма и Закон сохранения энергии

Принцип действия устройства можно схематически в виде энергетической диаграммы, как это показано на изображении 1. Диаграмма отражает процесс передачи энергии, в ходе которого и образуются электрические и магнитные потери .

Согласно диаграмме, формула определения эффективной мощности P 2 имеет следующий вид:

P 2 =P 1 -ΔP эл1 -ΔP эл2 -ΔP м (1)

где, P 2 - полезная, а P 1 - потребляемая аппаратом мощность из сети.

Обозначив суммарные потери ΔP, закон сохранения энергии будет выглядеть как: P 1 =ΔP+P 2 (2)

Из этой формулы видно, что P 1 расходуется на P 2 , а также на суммарные потери ΔP. Отсюда, коэффициент полезного действия трансформатора получается в виде соотношения отдаваемой (полезной) мощности к потребляемой (соотношение P 2 и P 1).

Определение коэффициента полезного действия

С требуемой точностью для расчёта устройства, заранее выведенные значения коэффициента полезного действия можно взять из таблицы №1:


Как показано в таблице, величина параметра напрямую зависит от суммарной мощности.

Определение КПД методом непосредственных измерений

Формулу для вычисления КПД можно представить в нескольких вариантах:

Данное выражение наглядно отражает, что значение КПД трансформатора не больше единицы, а также не равно ей.

Следующее выражение определяет значение полезной мощности:

P 2 =U 2 *J 2 *cosφ 2 , (4)

где U 2 и J 2 - вторичные напряжение и ток нагрузки, а cosφ 2 - коэффициент мощности, значение которого зависит от типа нагрузки.

Поскольку P 1 =ΔP+P 2 , формула (3) приобретает следующий вид:

Электрические потери первичной обмотки ΔP эл1н зависят от квадрата силы протекающего в ней тока. Поэтому определять их следует таким образом:

(6)

В свою очередь:

(7)

где r mp - активное обмоточное сопротивление.

Так как работа электромагнитного аппарата не ограничивается номинальным режимом, определение степени загрузки по току требует использования коэффициента загрузки, который равен:

β=J 2 /J 2н, (8)

где J 2н - номинальный ток вторичной обмотки.

Отсюда, запишем выражения для определения тока вторичной обмотки:

J 2 =β*J 2н (9)

Если подставить данное равенство в формулу (5), то получится следующее выражение:

Отметим, что определять значение КПД, с использованием последнего выражения, рекомендовано ГОСТом.

Резюмируя представленную информацию, отметим, что определить коэффициент полезного действия трансформатора можно по значениям мощности первичной и вторичной обмотки аппарата при номинальном режиме.

Определение КПД косвенным методом

Из-за больших величин КПД, которые могут быть равны 96% и более, а также неэкономичности метода непосредственных измерений, вычислить параметр с высокой степенью точности не представляется возможным. Поэтому его определение обычно проводится косвенным методом.

Обобщив все полученные выражения, получим следующую формулу для вычисления КПД:

η=(P 2 /P 1)+ΔP м +ΔP эл1 +ΔP эл2 , (11)

Подводя итог, следует отметить, что высокий показатель КПД свидетельствует об эффективно производимой работе электромагнитного аппарата. Потери в обмотках и стали сердечника, согласно ГОСТу, определяют при опыте , либо короткого замыкания, а мероприятия, направленные на их снижение, помогут достичь максимально возможных величин коэффициента полезного действия, к чему и необходимо стремиться.

Коэффициент полезного действия это характеристика эффективности работы, какого либо устройства или машины. КПД определяется как отношение полезной энергии на выходе системы к общему числу энергии подведенной к системе. КПД величина безразмерная и зачастую определяется в процентах.

Формула 1 — коэффициент полезного действия

Где—A полезная работа

Q суммарная работа, которая была затрачена

Любая система, совершающая какую либо работу, должна из вне получать энергию, с помощью которой и будет совершаться работа. Возьмем, к примеру, трансформатор напряжения. На вход подается сетевое напряжение 220 вольт, с выхода снимается 12 вольт для питания, к примеру, лампы накаливания. Так вот трансформатор преобразует энергию на входе до необходимого значения, при котором будет работать лампа.

Но не вся энергия, взятая от сети, попадет к лампе, поскольку в трансформаторе существуют потери. Например, потери магнитной энергии в сердечнике трансформатора. Или потери в активном сопротивлении обмоток. Где электрическая энергия будет переходить в тепловую не доходя до потребителя. Эта тепловая энергия в данной системе является бесполезной.

Поскольку потерь мощности избежать невозможно в любом системе то коэффициент полезного действия всегда ниже единицы.

КПД можно рассматривать как для всей системы целиком, состоящей из множество отдельных частей. Так и определять КПД для каждой части в отдельности тогда суммарный КПД будет равен произведению коэффициентов полезного действия всех его элементов.

В заключение можно сказать, что КПД определяет уровень совершенства, какого либо устройства в смысле передачи или преобразования энергии. Также говорит о том, сколько энергии подводимой к системе расходуется на полезную работу.



Поделиться