Что позволяет вертолетам летать? Самопроизвольное вращение вертолета.

«Ничто не вечно под луною», как писал в своих стихах Н. М. Карамзин,а уж тем более радиоуправляемые модели вертолетов. Все любители полетать рано или поздно сталкиваются с необходимостью ремонта. В этой статье мы постараемся дать некоторые советы по ремонту и диагностике радиоуправляемого вертолета (далее вертолет) фирмы SYMA S107 и ему аналогичных. В целом мы будем говорить о ремонте трех канального соосного радиоуправляемого вертолета.

Не будем спешить и посмотрим всё ли сделано согласно инструкции, а то есть:

  1. Пульт включен и горит индикатор включения.Кстати иногда при использовании щелочных низко мощных батареек индикатор включения может гореть, однако мощности для уверенного и достаточного сигнала не хватает. Советуем использовать батарейки с маркировкой Alkaline.
  2. Заряжен АКБ (аккумуляторная батарея), мигает индикатор включения в вертолете.
  3. Нет прямого яркого источника света (мощная лампа освещения, или яркий солнечный свет)

Если всё в порядке а «признаков жизни» так и не появилось, тогда придется раздобыть крестовую отвертку 2.0х 55mm и паяльник с тонким жалом .

Итак, вертолет включается, но верхние(нижние) лопасти вращаются с меньшей скоростью чем нижние(верхние),либо не вращаются вовсе .

Данная неисправность свидетельствует о неисправной системе привода.

Первым делом проверим пиньён на двигателях (маленькая шестеренка на валу двигателя) .
Проверить так же стоит и состояние самого пиньёна, т.к в некоторых случаях зубцы шестеренки бывают стерты и требуется замена.
Про диагностировать вертолет на исправность двигателя довольно таки просто,для этого достаточно прибавить газ и посмотреть с одинаковой ли скоростью вращаются лопасти верхнего и нижнего ротора. Смотрим какой двигатель отвечает за привод той системы лопасти которой вращаются с меньшей скоростью (либо не вращаются вовсе) и меняем двигатель. Для этого правда потребуется разобрать вертолет.












Если лопасти верхнего и нижнего ротора вращаются с одинаковой скоростью,но вертолет не взлетает, то причиной может быть АКБ. В среднем встроенный аккумулятор Li-Po держит 80-100 циклов заряд/разряд и со временем ресурс падает. Для замены рекомендую разобрать вертолет по указанной выше инструкции.

ВНИМАНИЕ! Остерегайтесь замыкания +(красный провод) на -(черный провод) , либо + на массу (допустим корпус вертолета)

В случае если вертолет не включается вовсе, а АКБ в нем не заряжается

Не спешите бежать в магазин за новым аккумулятором. Дело в том, что при длительном хранении в разряженном состоянии, либо при полном разряде(например забыли выключить вертолет и оставили на длительный срок) , мощности зарядного устройства,будь то пульт или USB адаптера не достаточно для старта. В этом случае можно попробовать восстановить АКБ методом подачи на соответствующие контакты повышенное напряжение от источника постоянного тока, примерно 4v-4.1v

Подождать 30 секунд и поставить АКБ на зарядку от стандартного зарядного устройства.

Если вертолет включается, лопасти вращаются с необходимой скоростью, но при взлете вертолет заносит вбок либо мотает по кругу.

В этом случае стоит обратить внимание на верхнюю часть соосной системы вашего вертолета.. Часто при ударах и падениях возникают механические повреждения, которые и являются причиной такого поведения.
Откручиваем 2 винтика и просто стягиваем всю верхушку целиком.













Обратите внимание на перемычки, которые необходимы для передачи крутящего момента от вала верхнего ротора на площадку держателя лопастей. Если хотя бы одна из них сломана вертолет будет мотать из стороны в сторону. В разных типах вертолета используются разные варианты исполнения этого узла, мы же рассмотрим вариант восстановления для нашей модели.


Для этого нам потребуется мини дрель с тонким сверлом (0.2 - 0.5 мм) либо тонкая игла, крестовая отвертка 2.0х 55mm,лезвие (бритва) и кусачки.


Всем удачи в ремонте Ваших вертолетов и спасибо за внимание.

Если у Вас сломался вертолет и Вы не знаете как его отремонтировать - напишите в комментариях модель Вашего вертолета, опишите поломку и мы постараемся написать следующую статью о ремонтах именно для Вашего случая.

Была ли полезна для Вас статья?

Источник: Николай Бездетнов, Герой Советского Союза, Заслуженный лётчик-испытатель СССР // АвиаПорт.Ru
Опубликовано: 28.11.2008 , 11:44

Вихревое кольцо и левое самопроизвольное вращение вертолёта


Статья Семенович А.Н. в журнале "Вертолётная индустрия" за апрель 2008 года "Попасть на вращение" удивила и ввергла в уныние. Впервые обнародованные увеличивающиеся потери одновинтовой вертолётной техники из-за случаев "непроизвольных, неуправляемых" левых вращений на режимах близких к висениям и откровенного непонимания лётчиками физики этого явления очевидны. Именно это непонимание делает пилотов беспомощными и при попадании их во вращение, и при выходе из него. Разумеется, этот вид лётной неграмотности проистекает из неграмотности их научных и других руководителей или неумения ими правильно использовать свои знания.

На самом деле эта проблема не стоит и выеденного яйца. Собственно никакой проблемы и нет. Есть только сплошная прикладная физика почему-то многими прикладными специалистами ещё не освоенная.

Одновинтовой вертолёт начинает неуправляемо вращаться влево только тогда, когда полная правая педаль не может остановить (парировать) это движение. В большинстве случаев это происходит из-за образования на хвостовом винте вихревого кольца по своей физике точно подобного вихревому кольцу (т.е. воздушному вихревому тору) на несущем винте, только в перпендикулярной по отношению к несущему винту плоскости. В этом случае, мощность, потребляемая хвостовым винтом, уходит не на создание силы и момента против вращения фюзеляжа, как реакции на прилагаемые к нему усилия двигателей, а на вращение массы воздуха в кольцевом торе и поэтому её не хватает собственно для путевого управления.

Условия для возникновения вихревого кольца на хвостовом винте и его характер, видимо серьёзно никто не изучал, но, полагаю, что они идентичны с характером и условиями возникновения его на несущем винте.

Любому лётчику, чтобы не бояться левых вращений и никогда из-за этого не ломать одновинтовые вертолёты, нужно знать вот что.

В самом начале формирования вихревого кольца на хвостовом винте внимательный лётчик замечает некоторую рассогласованность поведения курса вертолёта по отношению к своим управляющим действиям педалями. В этот момент можно ещё довольно просто исправить ситуацию незначительным движением ручки управления "от себя", т.е. увеличить "косую обдувку" хвостового винта. Но этот момент начала образования вихревого кольца и ещё слабый самопроизвольный разворот может совпасть с сиюминутным, плановым, произвольным пилотажным исполнением лётчика, и тогда начало неподчинения вертолёта может быть упущено пилотом любого высокого уровня. А секунду спустя, начнётся, по-настоящему, неуправляемое пресловутое вращение влево, и вот тогда отдача ручки управления вперёд, как это глубоко ошибочно требует инструкция, только усугубит ситуацию из-за того, что центр вращения вертолёта неизбежно переместится вперёд, увеличивая при этом радиус вращения хвостовой части фюзеляжа вместе с хвостовым винтом. А это очень сильно укрепляет позицию вихревого кольца и уже точно, таким способом благополучно выбраться из этой ситуации никакому лётчику не удастся.

Известно, что абсолютное большинство лётчиков-вертолётчиков на режиме висения чисто интуитивно разворачивают вертолёт относительно самого себя, т.е. пилотская кабина разворачивается на одном месте, а все остальные части фюзеляжа вращаются по своим, геометрическим для этого случая радиусам. К великому сожалению многие, видимо, не умеют управлять центром вращения и радиусами вращения различных частей своего вертолёта, а, между тем, это совсем не сложно, если лётчика кто-нибудь научил, или он сам, задумавшись, научился этому заблаговременно. Подобное умение вообще оказывается во многих пилотажных обстоятельствах востребованным, а для благополучного выхода из левого неуправляемого вращения вертолёта просто необходимым.

Вместо многочисленных официальных общих рекомендаций лётчикам, которые, к сожалению, в статистике изменить ничего не смогут, предлагаю конкретный, проверенный на себе и потому верный способ.

Рекомендации лётчику как действовать органами управления, чтобы лучше упасть тоже выглядят слегка странными. Дело в том, что приземление правильно вращающегося вертолёта, т.е. вращающегося относительно вала несущего винта или относительно центра базы основного шасси обязательно приведёт к опрокидыванию влево. Главный вопрос в том, что вовсе незачем немедленно приземляться при вращении, не использовав против этого органы управления правильно.

При соразмеренном взятии ручки управления на себя уменьшается радиус вращения хвостовой части фюзеляжа, создаются условия для разрушения вихревого кольца, ибо инертный вихревой тор не успеет за хвостовым винтом перестроить свою плоскость, плюс значительно уменьшится и осевой, наступающий на винт, внешний поток воздуха, как главный организатор завихрения. Всё очень просто!

Хочу сказать, что некоторые американские авиационные конструкторы, стремясь не допускать образований вихревого кольца на хвостовых винтах своих вертолётов, конструктивно заваливают плоскость их вращения вбок на весьма заметное число градусов, мирясь при этом с неизбежным возникновением перекрестных связей в системе управления, но надеясь на уменьшение числа катастроф. Интересно и то, что в своих информационных не секретных документах они пишут для наших доверчивых инженеров совсем о других причинах этой, в прошлом, большой новости.

Кстати, неуправляемо вращающийся в горизонтальной плоскости вертолёт, можно благополучно приземлить, если передние колёса его шасси при взлёте не самоориентируются вдоль продольной оси фюзеляжа, или эта фиксация достаточно легко нарушается при первом же посадочном боковом юзе, чего сейчас нет, но могло бы быть, если заказчик-эксплуатант, просчитав свои будущие, вполне возможные, потери от вынужденных приземлений с неуправляемым вращением, не обязательно левым и не обязательно из-за вихревого кольца, будет заказывать, и оплачивать именно такую конструкцию передних стоек шасси.

Лично я в своей лётной практике, такое приземление выполнил благополучно и только благодаря не самоориентирующимся передним колёсам на вертолёте Ка-15, как, впрочем, благополучно прекратил неожиданно возникшее мощное неуправляемое левое вращение вертолёта Ми-4. Последнее случилось в районе 1958 года, когда я ещё не обремененный на сей счёт никакими инструктивными рекомендациями, стараясь как-нибудь отдалить свой вращающийся вертолёт от близкой стоянки авиатехники, импульсами брал ручку "на себя", каждый раз, когда нос вертолёта был направлен на стоянку. Тогда причины возникновения вращения и его прекращения не были мной вполне осознаны. Прозрение пришло гораздо позже, когда случилась первая поломка вращающегося Ми-24 в ЛИИ. Но все мои обращения к различным специалистам по этому вопросу много лет были тщетными. Вероятно, я был бы более настойчивым, если бы знал раньше о видимо тщательно скрываемой доселе неприятной статистике этих лётных происшествий на исправных одновинтовых вертолётах.

Думаю, что серьёзность статьи Семенович А.Н. заставит моё предложение срочно проверить в целевых лётных испытаниях, тем более что преднамеренный вход в режим первой фазы образования вихревого кольца на хвостовом винте и выход из него осваивался слушателями школы лётчиков-испытателей выпуска 1961года под руководством инструктора В.В. Виницкого. Правда, тогда никто не знал, что это явление связано именно с вихревым кольцом, а преподносилось оно как аэродинамическая особенность вертолёта способная самопроизвольно "закинуть" хвост вперёд по движению. Сейчас этот приём легко можно продолжить до полного неуправляемого левого вращения любого одновинтового вертолёта, безопасный выход из которого абсолютно гарантируется предложенным мною способом.

Понимаю, что процесс официального признания моего предложения не будет быстрым, т.к. в этом и техническая политика, и амбиции различных специалистов, но немедленное доведение этой статьи до практикующих лётчиков сразу прекратило бы глупые потери, что позволило бы сколько угодно долго ждать официального дозревания.

Ясно, что предотвращать левое вращение и когда это уже случилось благополучно выходить из этой ситуации в условиях полетов на кораблях или нефтяных платформах всё равно будет весьма и весьма проблематично из-за чрезвычайно близких препятствий, и особенно при плохой погоде и ночью. Ведь неуправляемый левый разворот, хотя и не продолжительный, но всё равно будет иметь место. Так что ответственным специалистам есть над чем поломать свои головы, имея в виду, что неуправляемых любых разворотов над одиночными посадочными площадками кораблей и платформ не может быть вообще допустимо.

При этом считаю, что предложения лётчикам гарантированных мер по недопущению непроизвольных левых вращений сейчас невозможны. Здесь и отсутствие официальных достаточно точных данных об условиях образования вихревого тора, его конфигурации с учётом хвостовых конструктивных элементов, здесь и пилотажные способности каждого индивидуума, здесь и сложности учёта угла и силы относительного ветра (скорости и направления перемещения вертолёта в безориентирных условиях) и пр., и пр. Гарантированным в настоящее время может быть только безаварийное прекращение неуправляемых левых вращений в условиях отсутствия близких препятствий и этого уже очень не мало в свете статьи Семенович А.Н.

Вертолет летает потому, что сверху у него крутится большой несущий винт. У винта есть лопасти. Они по форме напоминают крылья самолета. И когда лопасти быстро крутятся на винте, возникает сила, которая поднимает эту машину в воздух.

У разных вертолетов на несущем винте – по-другому он называется ротором – может быть разное количество лопастей.

У вертолета средних размеров обычно бывает три лопасти.

Самые большие вертолеты, у которых четыре лопасти на несущем винте, могут одновременно перевозить много людей или большие грузы.
Они могут летать в разных направлениях.
Пилот, управляя вертолетом, может наклонить несущий винт влево. И тогда его воздушная машина начнет двигаться в сторону левого бока. А стоит наклонить несущий винт вправо, и машина станет двигаться в сторону правого бока.
Если наклонить ротор вперед или назад, то и вертолет будет двигаться вперед или назад – вот такая это послушная машина.
Вертолеты умеют даже зависать в воздухе. Такое свойство очень полезно для разных дел. И оно недоступно другим крылатым машинам.

Это интересно:
На самом верху вертолета укреплен большой пропеллер – ротор. Если ротор из горизонтального положения наклонить в ту или иную сторону, что может с помощью рычагов управления сделать пилот, то вертолет начнет двигаться именно в сторону наклона ротора. Потому что к подъемной силе вращающихся лопастей прибавляется еще и сила их поступательного горизонтального движения. На хвосте у каждого вертолета есть дополнительный маленький пропеллер. Он расположен вертикально и нужен для того, чтобы вертолет не закручивало при работе главного несущего винта.

САМОПРОИЗВОЛЬНОЕ СНИЖЕНИЕ ВЕРТОЛЕТА.

КРИТИЧЕСКИЕ РЕЖИМЫ ПОЛЕТА

Критические режимы полета – это такие режимы, в которых значительно превышены максимальные эксплуатационные параметры полета. Они характеризуются:

частичной или полной потерей управляемости хотя бы по одному из каналов управления;

большой угловой скоростью вращения вертолета или движением по осям;

быстротечностью;

наличием угрозы жизни экипажа;

тем, что для вывода из критических режимов необходимы не всегда прямые движения РУ и рычагов.


Самопроизвольное снижение вертолета – это такой режим, при котором летчик увеличением общего шага не может уменьшить вертикальную скорость снижения.

В этот режим вертолет может попасть при выходе за ограничения по минимально допустимой скорости. Особенно при выполнении взлета и заходе на посадку.

Причиной попадания вертолета в самопроизвольное снижение является уменьшение тяги НВ. Тяга НВ зависит от многих факторов, но основным является частота вращения. Уменьшение частоты вращения приводит к уменьшению тяги НВ.

ПРИЧИНЫ УМЕНЬШЕНИЯ ЧАСТОТЫ ВРАЩЕНИЯ НВ:

резкое взятие общего шага;

увеличение общего шага, когда двигатели работают на взлетном режиме;

увеличение угла тангажа при заходе на посадку при несвоевременном подводе мощности двигателей (позднее гашение скорости);

посадка с попутным ветром;

отказ одного или двух двигателей;

пролет над очагами пожаров.

ДЕЙСТВИЯ ЛЕТЧИКА:

1.Если есть запас высоты:

задержать общий шаг;

отклонением ручки управления от себя уйти на второй круг.

2.Если запаса высоты нет, то необходимо выполнить посадку с подрывом.

Самопроизвольное вращение – это такой режим, при котором летчик отклонением правой педали или уменьшением общего шага не может уменьшить угловую скорость вращения.

Возможно на взлете и посадке с максимальной полетной массой, и скоростью ветра справа более допустимой, при выполнении висения, разворотов на висении, восходящих или нисходящих разворотов. Здесь имеются ввиду развороты влево, когда угловая скорость разворота более допустимой.

Чем больше взлетная масса вертолета, высота висения и ветер справа, тем меньше запас хода правой педали, следовательно, больше вероятность попадания вертолета в самопроизвольное вращение.

Все наши отечественные вертолеты вращаются влево в направлении действия реактивного момента НВ.

Для балансировки вертолета на режиме висения в путевом отношении необходимо, чтобы

Это равенство может нарушиться в результате:

резкого взятия общего шага при несвоевременной даче правой педали;

увеличения общего шага, когда правая педаль стоит на упоре или очень мал запас по ходу правой педали и при разгоне вертолета возможна постановка ее на упор;



попадание рулевого винта в режим вихревого кольца;

отказ путевого управления.

Целесообразно рассматривать следующие расчетные случаи отказов путевого управления:

Разрушение привода РВ или концевой балки, сопровождаемое полным исчезновением тяги РВ и соответствующей разбалансировки вертолета;

Разрушение системы управления в хвостовом редукторе, сопровождаемое установкой лопастей РВ под действием шарнирных моментов на угол 1-2 0 и соответствующим уменьшением тяги РВ;

Разрушение (заклинивание) системы управления от педалей до хвостового редуктора, сопровождаемое невозможностью изменения режима полета вертолета и выполнения посадки.

Наиболее тяжелым и опасным является первый расчетный случай, приводящий к интенсивной разбалансировке вертолета в продольном и боковом движении, прежде всего, в азимутальной плоскости. Под действием не скомпенсированного тягой РВ реактивного момента НВ вертолет резко разворачивается влево и на малых скоростях полета, меньших экономической, фюзеляж вертолета делает несколько полных витков относительно вертикальной оси. При больших скоростях полета вследствие наличия значительной путевой устойчивости фюзеляжа движение рыскания приобретает колебательный характер с тенденцией возвращения к исходной курсовой ориентации.

Вследствие периодического изменения по величине и знаку продольной и боковой сил, моментов на втулке НВ и моментных характеристик фюзеляжа при полных разворотах фюзеляжа в азимутальной плоскости вертолет в процессе разворота подвержен резким и сильным броскам в противоположные стороны по тангажу и крену, интенсивность которых возрастает с увеличением скорости полета. Управление вертолетом с помощью ручки циклического шага крайне затруднено, ибо малейшая несинхронность управляющих действий пилота с неожиданными резкими бросками вертолета из стороны в сторону приводит к тому, что пилот не стабилизирует, а, наоборот, раскачает вертолет.

При отрыве РВ с хвостовым редуктором и концевой балкой рассматриваемая аварийная ситуация существенно усугубляется из-за падения путевого демпфирования, что приводит к значительному возрастанию угловой скорости вращения фюзеляжа относительно вертикальной оси. Кроме того, возникает значительный пикирующий момент из-за отделения на большом плече массы РВ, хвостового редуктора и концевой балки.

Во втором расчетном случае, когда углы установки лопастей и тяга РВ уменьшаются почти до нуля, вертолет может быть в принципе сбалансирован в азимутальной плоскости за счет создания крена и скольжения. На крейсерских и выше скоростях горизонтального полета потребный для путевой балансировки угол скольжения сравнительно невелик – порядка

10 0 , однако, по мере уменьшения скорости потребный угол скольжения резко возрастает, превышая 40-50 0 (рис.7.1.)

Рис.7.1. Зависмость балансировочного угла скольжения от скорости

горизонтального полета вертолета ()

Значительные трудности возникают и в третьем из рассматриваемых расчетных случаев отказов путевого управления с той, однако, разницей, что вследствие несбалансированной тяги РВ с заклиненным управлением вертолет заходит на посадку не с правым, а с левым скольжением.

ДЕЙСТВИЯ ЛЕТЧИКА :

1.Н вис =3-5м. Вертолет начало самопроизвольно разворачивать влево и на отклонение правой педали он не реагирует или правая педаль стоит на упоре:

1-й способ:

уменьшить общий шаг и посадить вертолет;

2-й способ:

задержать общий шаг;

незначительным отклонением ручки управления в сторону разворота и незначительным отклонением левой педали придать вертолету управляемый разворот влево.

2.Если вертолет вошел во вращение с увеличением угловой скорости, но не снижается и имеет запас по мощности, то можно рекомендовать следующее:

увеличением общего шага обеспечить вертолету вертикальный набор высоты с левым вращением с последующим переводом вертолета в поступательный полет отклонением РУ в сторону разворота (чем больше угловая скорость, тем больше угол крена).

3.Н вис =3-5м. Вертолет вошел во вращение:

выключить двигатели и посадить вертолет;

ручкой управления удерживать вертолет от опрокидывания.

4.Если вертолет начало самопроизвольно разворачивать при заходе на посадку:

4.1.Если есть запас высоты, то необходимо:

1-й способ:

задержать общий шаг;

отклонить РУ от себя и вправо и дать правую ногу.

2-й способ:

задержать общий шаг;

отклонением ручки управления от себя и влево и незначительным отклонением левой педали уйти на второй круг.

4.2.Если запаса высоты нет:

выключить двигатели;

выполнить посадку с подрывом.

За последнее время в мире вертолетной техники произошло несколько значимых событий. Американская компания Kaman Aerospace объявила о намерении возобновить производство синхроптеров, Airbus Helicopters пообещала разработать первый гражданский вертолет с электродистанционным управлением, а немецкая e-volo - испытать 18-роторный двухместный мультикоптер. Чтобы не запутаться во всем этом разнообразии, мы решили составить краткий ликбез по основным схемам вертолетной техники.

Впервые идея летательного аппарата с несущим винтом появилась около 400 года нашей эры в Китае, однако дальше создания детской игрушки дело не пошло. Всерьез инженеры взялись за создание вертолета в конце XIX века, а первый вертикальный полет нового типа летательного аппарата состоялся в 1907 году, спустя всего четыре года после первого полета братьев Райт. В 1922 году авиаконструктор Георгий Ботезат испытал вертолет-квадрокоптер, разработанный по заказу Армии США. Это был первый в истории устойчиво управляемый полет техники такого типа. Квадрокоптер Ботезата сумел взлететь на высоту пяти метров и провел в полете несколько минут.

С тех пор вертолетная техника претерпела множество изменений. Появился класс винтокрылых летательных аппаратов, который сегодня делится на пять типов: автожир, вертолет, винтокрыл, конвертоплан и X-крыло. Все они отличаются конструкцией, способом взлета и полета, управлением несущим винтом. В этом материале мы решили рассказать именно о вертолетах и их основных типах. При этом за основу была взята классификация по компоновке и расположению несущих винтов, а не традиционная - по типу компенсации реактивного момента несущего винта.

Вертолет является винтокрылым летательным аппаратом, у которого подъемная и движущая силы создаются одним или несколькими несущими винтами. Такие винты располагаются параллельно земле, а их лопасти устанавливаются под определенным углом к плоскости вращения, причем угол установки может изменяться в достаточно широких пределах - от нуля до 30 градусов. Установка лопастей на ноль градусов называется холостым ходом винта или флюгированием. В этом случае несущий винт не создает подъемной силы.

Во время вращения лопасти захватывают воздух и отбрасывают его в направлении, противоположном движению винта. В результате перед винтом создается зона пониженного давления, а за ним - повышенного. В случае вертолета так возникает подъемная сила, которая очень похожа на образование подъемной силы фиксированным крылом самолета. Чем больше угол установки лопастей, тем большую подъемную силу создает несущий винт.

Характеристики несущего винта определяются двумя основными параметрами - диаметром и шагом. Диаметр винта определяет возможности вертолета по взлету и посадке, а также отчасти величину подъемной силы. Шаг винта - это воображаемое расстояние, которое воздушный винт пройдет в несжимаемой среде при определенном угле установки лопастей за один оборот. Последний параметр влияет на подъемную силу и скорость вращения ротора, которую на большей части полета летчики стараются держать неизменной, меняя только угол установки лопастей.

При полете вертолета вперед и вращении несущего винта по часовой стрелке, набегающий поток воздуха сильнее воздействует на лопасти с левой стороны, из-за чего возрастает и их эффективность. В результате левая половина окружности вращения винта создает большую подъемную силу, чем правая, и возникает кренящий момент. Для его компенсации конструкторы придумали - это особая система, которая уменьшает угол установки лопастей слева и увеличивает его справа, выравнивая таким образом подъемную силу по обе стороны винта.

В целом, вертолет имеет несколько преимуществ и несколько недостатков перед самолетом. К преимуществам относится возможность вертикального взлета и посадки на площадки, диаметр которых в полтора раза превосходит диаметр несущего винта. При этом вертолет может на внешней подвеске перевозить крупногабаритные грузы. Вертолеты отличаются и лучшей маневренностью, поскольку могут висеть вертикально, лететь боком или задом-наперед, поворачиваться на месте.

К недостаткам же относятся большее, чем у самолетов, потребление топлива, большая инфракрасная заметность из-за горячего выхлопа двигателя или двигателей, а также повышенная шумность. Кроме того, вертолетом в целом сложнее управлять из-за ряда особенностей. Например, летчикам вертолетов знакомы явления земного резонанса, флаттера, вихревого кольца, эффекта запирания несущего винта. Эти факторы могут приводить к разрушению или падению машины.

У вертолетной техники любых схем существует режим авторотации. Он относится к аварийным режимам. Это означает, что при отказе, например, двигателя несущий винт или винты при помощи обгонной муфты отсоединяются от трансмиссии и начинают свободно раскручиваться набегающим потоком воздуха, тормозя падение машины с высоты. В режиме авторотации возможна управляемая аварийная посадка вертолета, причем вращающийся несущий винт через редуктор продолжает раскручивать рулевой винт и генератор.

Классическая схема

Из всех типов вертолетных схем сегодня самой распространенной является классическая. При такой схеме машина имеет только один несущий винт, который может приводиться в движение одним, двумя или даже тремя двигателями. К этому типу, например, относятся ударные AH-64E Guardian, AH-1Z Viper, Ми-28Н, транспортно-боевые Ми-24 и Ми-35, транспортные Ми-26, многоцелевые UH-60L Black Hawk и Ми-17, легкие Bell 407 и Robinson R22.

При вращении несущего винта на вертолетах классической схемы возникает реактивный момент, из-за которого корпус машины начинает раскручиваться в сторону, противоположную вращению ротора. Для компенсации момента используют рулевое устройство на хвостовой балке. Как правило им является рулевой винт, но это может быть и фенестрон (винт в кольцевом обтекателе) или несколько воздушных сопел на хвостовой балке.

Особенностью классической схемы являются перекрестные связи в каналах управления, обусловленные тем, что рулевой винт и несущий приводятся одним и тем же двигателем, а также наличием автомата перекоса и множества других подсистем, ответственных за управление силовой установкой и роторами. Перекрестная связь означает, что при изменении какого-либо параметра работы воздушного винта, поменяются и все остальные. Например, при увеличении частоты вращения несущего винта возрастет и частота вращения рулевого.

Управление полетом осуществляется наклоном оси вращения несущего винта: вперед - машина полетит вперед, назад - назад, вбок - вбок. При наклоне оси вращения возникнет движущая сила и уменьшается подъемная. По этой причине для сохранения высоты полета летчику необходимо менять и угол установки лопастей. Направление полета задается изменением шага рулевого винта: чем он меньше, тем меньше компенсируется реактивный момент, и вертолет поворачивает в сторону, противоположную вращению несущего винта. И наоборот.

В современных вертолетах в большинстве случаев управление полетом по горизонтали осуществляется при помощи автомата перекоса. Например, для движения вперед летчик при помощи автомата уменьшает угол установки лопастей для передней половины плоскости вращения крыла и увеличивает - для задней. Таким образом сзади подъемная сила увеличивается, а спереди - уменьшается, благодаря чему изменяется наклон винта и появляется движущая сила. Такая схема управления полетом применяется на всех вертолетах почти всех типов, если на них установлен автомат перекоса.

Соосная схема

Второй по распространенности вертолетной схемой является соосная. В ней рулевой винт отсутствует, зато есть два несущих винта - верхний и нижний. Они располагаются на одной оси и вращаются синхронно в противоположных направлениях. Благодаря такому решению винты компенсируют реактивный момент, а сама машина получается несколько более устойчивой по сравнению с классической схемой. Кроме того, у вертолетов соосной схемы практически отсутствуют перекрестные связи в каналах управления.

Наиболее известным производителем вертолетов соосной схемы является российская компания «Камов». Она выпускает корабельные многоцелевые вертолеты Ка-27, ударные Ка-52 и транспортные Ка-226. Все они имеют по два винта, расположенных на одной оси друг под другом. Машины соосной схемы, в отличие от вертолетов классической схемы, способны, например, делать воронку, то есть выполнять облет цели по кругу, оставаясь на одном и том же расстоянии от нее. При этом носовая часть всегда остается развернутой в сторону цели. Управление рысканием осуществляется подтормаживанием одного из несущих винтов.

В целом управлять вертолетами соосной схемы несколько проще, чем обычными, особенно в режиме висения. Но существуют и свои особенности. Например, при выполнении петли в полете может случиться перехлест лопастей нижнего и верхнего несущего винтов. Кроме того, в проектировании и производстве соосная схема более сложна и дорога, чем классическая схема. В частности из-за редуктора, передающего вращение вала двигателя на винты, а также автомата перекоса, синхронно устанавливающего угол лопастей на винтах.

Продольная и поперечная схемы

Третьей по популярности является продольная схема расположения несущих винтов вертолета. В этом случае винты располагаются параллельно земле на разных осях и разнесены друг от друга - один находится над носовой частью вертолета, а другой - над хвостовой. Типичным представителем машин такой схемы является американский тяжелый транспортный вертолет CH-47G Chinook и его модификации. Если винты располагаются на законцовках крыльев вертолета, то такая схема называется поперечной.

Серийных представителей вертолетов поперечной схемы сегодня не существует. В 1960-1970-х годах конструкторское бюро Миля разрабатывало тяжелый грузовой вертолет В-12 (также известен, как Ми-12, хотя этот индекс неверен) поперечной схемы. В августе 1969 года прототип В-12 установил рекорд грузоподъемности среди вертолетов, подняв на высоту 2,2 тысячи метров груз массой 44,2 тонны. Для сравнения самый грузоподъемный в мире вертолет Ми-26 (классическая схема) может поднимать грузы массой до 20 тонн, а американский CH-47F (продольная схема) - массой до 12,7 тонны.

У вертолетов продольной схемы несущие винты вращаются в противоположных направлениях, однако это компенсирует реактивные моменты лишь отчасти, из-за чего в полете летчикам приходится учитывать возникающую боковую силу, уводящую машину с курса. Движение в стороны задается не только наклоном оси вращения несущих винтов, но и разными углами установки лопастей, а управление рысканием производится за счет изменения частоты вращения роторов. Задний винт у вертолетов продольной схемы всегда располагается чуть выше переднего. Это сделано для исключения взаимного влияния от их воздушных потоков.

Кроме того, на определенных скоростях полета вертолетов продольной схемы иногда могут возникать значительные вибрации. Наконец, вертолеты продольной схемы оснащаются сложной трансмиссией. По этой причине такая схема расположения винтов распространена мало. Зато вертолеты продольной схемы меньше других машин подвержены возникновению вихревого кольца. В этом случае во время снижения воздушные потоки, создаваемые винтом, отражаются от земли вверх, затягиваются винтом и снова направляются вниз. При этом подъемная сила несущего винта резко снижается, а изменение частоты вращения ротора или увеличение угла установки лопастей эффекта практически не оказывает.

Синхроптер

Сегодня вертолеты, построенные по схеме синхроптера, можно отнести к самым редким и наиболее интересными с конструктивной точки зрения машинами. Их производством до 2003 года занималась только американская компания Kaman Aerospace. В 2017 году компания планирует возобновить выпуск таких машин под обозначением K-Max. Синхроптеры можно было бы отнести к вертолетам поперечной схемы, поскольку валы двух их винтов расположены по бокам корпуса. Однако оси вращения этих винтов расположены под углом другу к другу, а плоскости вращения - пересекаются.

У синхроптеров, как у вертолетов соосной, продольной и поперечной схем, рулевой винт отсутствует. Несущие же винты вращаются синхронно в противоположные стороны, а их валы связаны друг с другом жесткой механической системой. Это гарантированно предотвращает столкновение лопастей при разных режимах и скоростях полета. Впервые синхроптеры были изобретены немцами во время второй мировой войны, однако серийное производство велось уже в США с 1945 года компанией Kaman.

Направлением полета синхроптера управляют исключительно изменением угла установки лопастей винтов. При этом из-за перекрещивания плоскостей вращения винтов, а значит сложения подъемных сил в местах перекрещивания, возникает момент кабрирования, то есть подъема носовой части. Этот момент компенсируется системой управления. В целом же, считается, что синхроптером проще управлять в режиме висения и на скоростях больше 60 километров в час.

К достоинствам таких вертолетов относится экономия топлива за счет отказа от рулевого винта и возможность более компактного размещения агрегатов. Кроме того, синхроптерам характерна большая часть положительных качеств вертолетов соосной схемы. К недостаткам же относится необычайная сложность механической жесткой связи валов винтов и системы управления автоматами перекоса. В целом это делает вертолет дороже, по сравнению с классической схемой.

Мультикоптер

Разработка мультикоптеров началась практически одновременно с работами над вертолетом. Именно по этой причине первым вертолетом, совершившим управляемый взлет и посадку стал в 1922 году квадрокоптер Ботезата. К мультикоптерам относят машины, как правило имеющие четное количество несущих винтов, причем их должно быть больше двух. В серийных вертолетах сегодня схема мультикоптеров не используется, однако она чрезвычайно популярна у производителей малой беспилотной техники.

Дело в том, что в мультикоптерах используются винты с неизменяемым шагом винта, причем каждый из них приводится в движение своим двигателем. Компенсация реактивного момента производится вращением винтов в разные стороны - половина крутится по часовой стрелке, а другая половина, расположенная по диагонали, - в противоположном направлении. Это позволяет отказаться от автомата перекоса и в целом значительно упростить управление аппаратом.

Для взлета мультикоптера частота вращения всех винтов увеличивается одинаково, для полета в сторону - вращение винтов на одной половине аппарата ускоряется, а на другой - замедляется. Поворот мультикоптера производится замедлением вращения, например, винтов, крутящихся по часовой стрелке или наоборот. Такая простота конструкции и управления и послужила основным толчком к созданию квадрокоптера Ботезата, однако последующее изобретение рулевого винта и автомата перекоса практически затормозило работы над мультикоптерами.

Причиной же, по которой сегодня не существует мультикоптеров, предназначенных для перевозки людей, является безопасность полетов. Дело в том, что в отличие от всех остальных вертолетов, машины с несколькими винтами не могут совершать аварийную посадку в режиме авторотации. При отказе всех двигателей мультикоптер становится неуправляемым. Впрочем, вероятность такого события невысока, однако отсутствие режима авторотации является главным препятствием для прохождении сертификации на безопасность полетов.

Впрочем, в настоящее время немецкая компания e-volo занимается разработкой мультикоптера с 18 роторами. Этот вертолет предназначен для перевозки двух пассажиров. Как ожидается, он совершит первый полет в ближайшие несколько месяцев. По расчетам конструкторов, прототип машины сможет находиться в воздухе не больше получаса, однако этот показатель планируется довести по меньшей мере до 60 минут.

Следует также отметить, что помимо вертолетов с четным количеством винтов существуют и мультикоптерные схемы с тремя и пятью винтами. У них один из двигателей расположен на отклоняемой в стороны платформе. Благодаря этому осуществляется управление направлением полета. Впрочем, в такой схеме становится сложнее гасить реактивный момент, поскольку два винта из трех или три из пяти всегда вращаются в одном направлении. Для нивелирования реактивного момента некоторые из винтов вращаются быстрее, а это создает ненужную боковую силу.

Скоростная схема

Сегодня наиболее перспективной в вертолетной технике считается скоростная схема, позволяющая вертолетам летать на существенно большей скорости, чем могут современные машины. Чаще всего такую схему называют комбинированным вертолетом. Машины этого типа строятся по соосной схеме или с одним винтом, однако имеют небольшое крыло, создающее дополнительную подъемную силу. Кроме того, вертолеты могут быть оснащены толкающим винтом в хвостовой части или двумя тянущими на законцовках крыла.

Ударные вертолеты классической схемы AH-64E способны развивать скорость до 293 километров в час, а соосные Ка-52 - до 315 километров в час. Для сравнения, комбинированный вертолет - демонстратор технологий Airbus Helicopters X3 с двумя тянущими винтами может разгоняться до 472 километров в час, а его американский конкурент с толкающим винтом - Sikorksy X2 - до 460 километров в час. Перспективный разведывательный скоростной вертолет S-97 Raider сможет летать на скоростях до 440 километров в час.

Строго говоря, комбинированные вертолеты относятся скорее не к вертолетам, а к другому типу винтокрылых летательных аппаратов - винтокрылам. Дело в том, что движущая сила у таких машин создается не только и не столько несущими винтами, сколько толкающими или тянущими. Кроме того, за создание подъемной силы отвечают и несущие винты, и крыло. А на больших скоростях полета управляемая обгонная муфта отключает несущие винты от трансмиссии и дальнейший полет идет уже в режиме авторотации, при которой несущие винты работают, фактически, как крыло самолета.

В настоящее время разработкой скоростных вертолетов, которые в перспективе смогут развивать скорость свыше 600 километров в час, занимаются несколько стран мира. Помимо Sikorsky и Airbus Helicopters такие работы ведут российские «Камов» и конструкторское бюро Миля (Ка-90/92 и Ми-X1 соответственно), а также американская Piacesky Aircraft. Новые комбинированные вертолеты смогут совместить в себе скорость полета турбовинтовых самолетов и вертикальные взлет и посадку, присущие обычным вертолетам.

Фотография: Official U.S. Navy Page / flickr.com



Поделиться